Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29905, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720723

RESUMO

The Eucalyptus genus, characterized by its imposing stature and fragrant foliage, has been a source of fascination for humanity over the centuries. The focus of the present investigation was directed towards the essentials oils (EOs) of five Eucalyptus trees cultivated in Tunisia. The GC-MS analysis unveiled unique compositional profiles, a finding substantiated by both Hierarchical Clustering Analysis (HCA) and Principal Component Analysis (PCA) conducted on the leaves EOs. These analyses resulted in the formation of discrete HCA clades, delineating 23 significant components. Notably, the percentage of eucalyptol emerged as the pivotal factor demarcating the separation between three distinct groups. The statistical analysis revealed a dose-dependent relationship in both phytotoxicity evaluation and antibacterial activity. The EOs from Eucalyptus loxophleba and E. salubris exhibited the highest phytotoxicity, inhibiting radical elongation and germination of various seeds, especially Sinapis arvensis and Raphanus sativus. The antimicrobial assessment demonstrated significant inhibitory effects of the EOs on bacterial strains, with MIC values spanning from 14 to exceeding 50 mg/ml. The EOs also affected biofilm formation and cellular metabolism, displaying varied efficacy among different Eucalyptus species against some bacterial strains. The EOs exhibited selective inhibition against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, and α-glucosidase. E. campaspe EO showed the highest AChE activity, while E. loxophleba and E. salubris EOs were most potent toward α-amylase. E. loxophleba EO demonstrated notable activity against α-glucosidase. Overall, these findings provide important data about the diverse biological activities of Eucalyptus EOs, suggesting potential applications in agriculture, medicine, and pharmacy.

2.
Plants (Basel) ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611496

RESUMO

BACKGROUND: The 2015 Nobel Prize in Medicine, awarded for the discovery of artemisinin in Artemisia annua, reignited interest in aromatic plants, including Artemisia absinthium L. This article delves into the historical, ethnopharmacological and medicinal significance of A. absinthium, examining its bitter taste noted since ancient Greek times and its association with medicinal properties throughout history. Despite being banned in the 20th century due to perceived health risks; recent research has led to the reconsideration of A. absinthium's potential applications. This study focuses on the prebiotic efficacy of essential oils (EOs) from two Artemisia species: A. absinthium and A. annua. MATERIALS AND METHODS: A broth microdilution test, growth curve test and in vivo models were used to study the impact of low doses (from 0.5% v/v to 0.00048 v/v) of Artemisia spp-EO on the three probiotic strains (Lactobacillus, Lactobacillus casei and Saccharomyces boulardii). RESULTS: These essential oils, when used in minimal concentrations (lower than 0.06% v/v), are safe and exhibit prebiotic effects on major probiotic strains, supporting the traditional culinary use of Artemisia spp. CONCLUSION: This research opens avenues for potential applications in the food industry, emphasizing the need for further exploration into the prebiotic properties of Artemisia spp-EOs and their influence on the microbiota.

3.
Plants (Basel) ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592817

RESUMO

Artemisia arborescens is a Mediterranean evergreen shrub, with silver grey-green tomentose leaves and a strong scent. It has various ethnopharmacological uses and its secondary metabolites have demonstrated antimicrobial, antiviral, pharmaceutical, phytotoxic, and insecticidal activities. Different extracts obtained from aerial parts of this species are known for their allelopathic effect, but similar studies on its essential oil (EO) are lacking. Therefore, we carried out a pharmacognostic study, obtaining the characterization of the secretory structures and the EO produced. Trans-thujone and camphor are the main components, followed by aromadendrene, camphene, and 8-cedren-13-ol. EO phytotoxic activity was tested on weed plants (Lolium multiflorum Lam. and Sinapis arvensis L.) and crops (Raphanus sativus L. and Cucumis sativus L.), showing inhibition on both germination and radical growth of the two weeds tested. The effects of the EO against the bacterial plant pathogens Xanthomonas campestris pv. campestris (Gram-) and Pseudomonas syringae pv. tomato (Gram+) was also assayed. The minimum inhibitory concentration (MIC) was observed when it was used undiluted [100% v/v], and growth inhibition when diluted at different doses. The antimicrobial activity was also confirmed by the cellular material release and biofilm formation assays. The overall data show that A. arborescens EO can find application as a potential alternative biocontrol product against weeds and plant pathogens. This goal is particularly important from the perspective of replacing synthetic pesticides with natural products, which safeguard both the environment and the health of consumers.

4.
Chem Biodivers ; 21(5): e202400274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466647

RESUMO

The aim of the current study was to compare some biological activities of edible oils enriched with 10 % of cannabidiol (CBD samples) from the Slovak market. In addition, hemp, coconut, argan, and pumpkin pure oils were also examined. The study evaluated the fatty acids content, as well as antibacterial, antifungal, antioxidant, cytotoxic, and phytotoxic activities. The CBD samples presented antimicrobial activity against the tested bacterial strains at higher concentrations (10000 and 5000 mg/L) and antifungal activity against Alternaria alternata, Penicillium italicum and Aspergillus flavus. DPPH⋅ and FRAP assays showed greater activity in CBD-supplemented samples compared to pure oils and vitamin E. In cell lines (IPEC-J2 and Caco-2), a reduced cell proliferation and viability were observed after 24 hours of incubation with CBD samples. The oils showed pro-germinative effects. The tested activities were linked to the presence of CBD in the oils.


Assuntos
Antioxidantes , Canabidiol , Proliferação de Células , Canabidiol/farmacologia , Canabidiol/química , Humanos , Proliferação de Células/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Testes de Sensibilidade Microbiana , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Antifúngicos/farmacologia , Antifúngicos/química , Penicillium/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Aspergillus flavus/efeitos dos fármacos
5.
Heliyon ; 10(1): e23656, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187260

RESUMO

Callitris glaucophylla Joy Thomps. & L.A.S. Johnson is a coniferous forest species of the Cupressaceae family native to Australia. This species is rich in essential oils (EOs) but few studies about variability and biological activity of these EOs are available in the literature. The purpose of this study was to evaluate the variability of production of C. glaucophylla EOs in relation to the different plant parts (needles, cones and stems) and to investigate their antioxidant, anti-enzymatic and herbicidal properties. EOs were obtained by hydro distillation and analyzed by GC and GC-MS. The antioxidant potential of EOs was assessed by ABTS, FRAP and DPPH assays, their phytotoxic activities were evaluated against germination and shoots and radical growth of Sinapis arvensis, Trifolium campestre, Lepidium sativum and Lolium rigidum. The EOs were evaluated for their possible anti-enzymatic effects with spectrophotometric assay. EOs resulted rich in monoterpenes hydrocarbons (61.04-77.82 %) and oxygenated monoterpenes (19.52-25.26 %). The main compounds were α-pinene as major compound in all plant parts (36.99-59.84 %), 1,8-cineole (19.88 % in stems) and limonene (18.94 % in needles). Herbicidal assays showed that all EOs have remarkable and significant phytotoxicity towards germination, roots, and aerial parts growth of the tested plants, depending on the EO, the doses and tested species. The EOs showed significant free radical scavenging potential and resulted more active against cholinesterases than α-glucosidase and α-amylase. The data obtained constitute an important contribution in selecting and valorizing appropriate forestry tree biomass as sources of antioxidant and phytotoxic molecules for sustainable application in food preservation and weeds control. The activities against the tested enzymes confirmed a possible use of these EOs as natural pesticides.

6.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067422

RESUMO

Illicium verum, or star anise, has many uses ranging from culinary to religious. It has been used in the food industry since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained via hydro-distillation of the aerial parts of Illicium verum. Twenty-four components were identified representing 92.55% of the analyzed essential oil. (E)-anethole (83.68%), limonene (3.19%), and α-pinene (0.71%) were the main constituents of I. verum EO. The results show that the obtained EO was effective against eight bacterial strains to different degrees. Concerning the antibiofilm activity, trans-anethole was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that I. verum EO possesses more potent inhibitory effects on the swarming behavior of PAO1 when compared to trans-anethole, with the percentage reaching 38% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirmed their important pharmacokinetic and drug-likeness properties. The in silico study using a molecular docking approach revealed a high binding score between the identified compounds with known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results suggest I. verum EO to be a potentially good antimicrobial agent to prevent food contamination with foodborne pathogenic bacteria.


Assuntos
Illicium , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Percepção de Quorum , Illicium/química , Simulação de Acoplamento Molecular , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Pseudomonas aeruginosa
7.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38139796

RESUMO

Citrus, which belongs to the Rutaceae family, is a very widespread genus in the Mediterranean Basin. In Tunisia, various parts of these spontaneous or cultivated plants are used in common dishes or in traditional medicine. The purpose of this work was to investigate C. limon and C. paradisi essential oil (EO). The samples were studied for their chemical composition using SPME/MS, as well as their antibacterial and antifungal activities. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) methods were used to evaluate the anticoagulant potentialities. The obtained results show that both essential oils are rich in monoterpenes hydrocarbons, whereby limonene is the main compound in C. paradisi EO (86.8%) and C. limon EO (60.6%). Moreover, C. paradisi EO contains ß-pinene (13.3%), sabinene (2.2%) and α-pinene (2.1%). The antibacterial assay of the essential oils showed important bactericidal and fungicidal effects against all strains tested. In fact, the MICs values of C. limon EO ranged from 0.625 to 2.5 mg/mL against all Gram-positive and Gram-negative bacteria, and from 6.25 to 12.5 mg/mL for Candida spp. strains, while C. paradisi EO was more active against all bacteria with low MICs values ranging from 0.192 to 0.786 mg/mL, and about 1.5 mg/mL against Candida species. Both tested Citrus EOs exhibited interesting anticoagulant activities as compared to heparin. The molecular docking approach was used to study the binding affinity and molecular interactions of all identified compounds with active sites of cytidine deaminase from Klebsiella pneumoniae (PDB: 6K63) and the C (30) carotenoid dehydrosqualene synthase from Staphylococcus aureus (PDB: 2ZCQ). The obtained results show that limonene had the highest binding score of -4.6 kcal.mol-1 with 6K63 enzyme, and -6.7 kcal.mol-1 with 2ZCQ receptor. The ADME profiling of the major constituents confirmed their important pharmacokinetic and drug-like properties. Hence, the obtained results highlight the potential use of both C. limon and C. paradisi essential oils as sources of bioactive compounds with antibacterial, antifungal, and anti-coagulant activities.

8.
Molecules ; 28(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37894690

RESUMO

This study was conducted to examine the chemical composition of the essential oils (EOs) from six Tunisian Eucalyptus species and to evaluate their anti-enzymatic and antibiofilm activities. The EOs were obtained through hydro-distillation of dried leaves and subsequently analyzed using GC/MS. The main class of compounds was constituted by oxygenated monoterpenes, particularly prominent in E. brevifolia (75.7%), E. lehmannii (72.8%), and E. woollsiana (67%). Anti-enzymatic activities against cholinesterases, α-amylase, and α-glucosidase were evaluated using spectrophotometric methods. Notably, the E. brevifolia, E. extensa, E. leptophylla, E. patellaris, and E. woollsiana EOs displayed potent acetylcholinesterase (AChE) inhibition (IC50: 0.25-0.60 mg/mL), with E. lehmannii exhibiting lower activity (IC50: 1.2 mg/mL). E. leptophylla and E. brevifolia showed remarkable α-amylase inhibition (IC50: 0.88 mg/mL), while E. brevifolia and E. leptophylla significantly hindered α-glucosidase (IC50 < 30 mg/mL), distinguishing them from other EOs with limited effects. Additionally, the EOs were assessed for their anti-biofilm properties of Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative (Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The E. extensa EO demonstrated the main antibiofilm effect against E. coli and L. monocytogenes with an inhibition > 80% at 10 mg/mL. These findings could represent a basis for possible further use of Eucalyptus EOs in the treatment of human microbial infections and/or as a coadjutant in preventing and treating Alzheimer's disease and/or diabetes mellitus.


Assuntos
Eucalyptus , Óleos Voláteis , Humanos , Eucalyptus/química , Escherichia coli , Tunísia , Acetilcolinesterase/farmacologia , alfa-Glucosidases/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleo de Eucalipto/farmacologia , alfa-Amilases , Testes de Sensibilidade Microbiana
9.
Plants (Basel) ; 12(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37687315

RESUMO

Eucalyptus species are known to produce metabolites such as essential oils (EOs) that play an important role in the control of weeds, pests and phytopathogenic fungi. The aims of this study were as follows: (i) to determine the chemical composition of the EOs derived from eight Eucalyptus species growing in Tunisia, and (ii) to study their possible antifungal and herbicidal activities. EOs were obtained by hydrodistillation from the dried leaves of eight Eucalyptus species, namely, E. angulosa, E. cladocalyx, E. diversicolor, E. microcoryx, E. ovata, E. resinifera, E. saligna and E. sargentii, and the determination of their composition was achieved by GC and GC-MS. The EOs' antifungal activities were tested against four Fusarium strains, and the EOs' herbicidal properties were evaluated on the germination and seedling growth of three annual weeds (Trifolium campestre, Lolium rigidum and Sinapis arvensis) and three cultivated crop species (Lepidium sativum, Raphanus sativus and Triticum durum). The EO yields ranged between 0.12 and 1.32%. The most abundant components found were eucalyptol, α-pinene, p-cymene, trans-pinocarveol, α-terpineol and globulol. All EOs showed significant antifungal activity against the four phytopathogenic Fusarium strains. E. cladocalyx EO exhibited the highest level of antifungal activity, and the greatest inhibition of seed germination was obtained even at lowest concentrations used. These findings suggested that E. resinifera, E. ovata and E. cladocalyx EOs could have applications in agriculture as possible biopesticides, as Fusarium antagonists and as bioherbicides.

10.
Plants (Basel) ; 12(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37653914

RESUMO

Anethum graveolens L. has been known as an aromatic, medicinal, and culinary herb since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained by hydro-distillation of the aerial parts. Twelve components were identified, representing 92.55% of the analyzed essential oil. Limonene (48.05%), carvone (37.94%), cis-dihydrocarvone (3.5%), and trans-carvone (1.07%) were the main identified constituents. Results showed that the obtained EO was effective against eight bacterial strains at different degrees. Concerning the antibiofilm activity, limonene was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that A. graveolens induced more potent inhibitory effects in the swarming behavior of the PAO1 strain when compared to limonene, with a percentage reaching 33.33% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirms their important pharmacokinetic and drug-like properties. The in-silico study using molecular docking approaches reveals a high binding score between the identified compounds and known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results highlight the possible use of A. graveolens EO to prevent food contamination with foodborne pathogenic bacteria.

11.
Plants (Basel) ; 12(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37447117

RESUMO

This study aims to analyze the chemical composition of the essential oils (EOs) obtained from stems and umbels of D. tortuosa as well the assessment of their biological activity. EOs were extracted by hydrodistillation and analyzed by gas chromatography coupled to mass spectrometry (GC/MS). The antioxidant properties were determined by DPPH and ABTS assays. The phytotoxic potential was assessed against dicots weeds (Sinapis arvensis and Trifolium campestre), monocots weeds (Lolium rigidum) and the crop Lepidium sativum. The antifungal activity was evaluated against four target phytopathogenic fungal strains. High diversity of compounds was detected in D. tortuosa Eos, varying among plant parts and consisting mainly of α-pinene (24.47-28.56%), sabinene (16.2-18.6%), α-phellandrene (6.3-11.7%) and cis-ocimene (5.28-7.85%). D. tortuosa EOs exhibited remarkable antioxidant activity, as well as interesting variable antifungal activities depending on the dose and fungi strain. The herbicidal activity of EOs showed significant efficacy on the inhibition of germination and seedling growth of all tested herbs. These results suggest that the EOs of Deverra tortuosa represent a valuable source of antioxidant, antifungal and phytotoxic metabolites and could be potential candidates for pest management, contributing to the promotion of sustainable agriculture.

12.
Antioxidants (Basel) ; 12(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37107241

RESUMO

Eucalyptus species have been widely employed in the projects of reforestation in Tunisia. Although their ecological functions are controversial, these plants are indeed important to counteract soil erosion, and represent a fast-growing source of fuelwood and charcoal wood. In the present study, we considered five Eucalyptus species, namely Eucalyptus alba, E. eugenioides, E. fasciculosa, E. robusta, and E. stoatei cultivated in the Tunisian Arboreta. The aim was to carry out the micromorphological and anatomical characterization of the leaves, the extraction and phytochemical profile of the essential oils (EOs), and the evaluation of their biological properties. Four of the EOs showed the prevalence of eucalyptol (1,8-cineole) varying from 64.4 to 95.9%, whereas a-pinene predominated in E. alba EO (54.1%). These EOs showed in vitro antioxidant activity, and reduced the oxidative cellular stress as shown by their activity on reactive oxygen species (ROS) production, and modulation of the expression of antioxidant enzymes, such as glutamate-cysteine ligase (GCL) and heme oxygenase-1 (Hmox-1). Moreover, the EOs inhibited the production of nitric oxide (NO), showing anti-inflammatory activity. The data collected suggest that these EOs may be considered a promising therapeutic strategy for inflammation-based diseases and may represent an additional value for the economy of Tunisia.

13.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500316

RESUMO

This study was carried out to characterize the chemical composition of the essential oils from seven Eucalyptus species (E. griffithsii, E. hemiphloia, E. lesouefii, E. longicornis, E. pyriformis, E. viminalis, and E. wandoo), as well as their phytotoxic and antibacterial activities. The essential oils were analyzed by GC/MS and the potential in vitro phytotoxicity was evaluated against germination and radical elongation of Raphanus sativus, Lolium multiflorum, and Sinapis arvensis seeds. The antibiofilm activity was studied against both Gram-negative (Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii) and Gram-positive (Staphylococcus aureus and Listeria monocytogenes) bacteria. The inhibition of biofilm formation and its metabolism was determined at different times. Eucalyptol was the most abundant component in all essential oils studied (ranging from 40.8% for E. lesouefii EO to 73.6% for E. wandoo) except for that of E. pyriformis where it was present but at 15.1%. E. pyriformis was the most active against both germination and radical elongation of S. arvensis. The action of all essential oils proved to be highly effective in inhibiting the bacterial adhesion process of the five strains considered. In light of these results, these essential oils could have potential applications both in the agricultural and health fields.


Assuntos
Eucalyptus , Óleos Voláteis , Eucalyptus/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Eucaliptol/farmacologia , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química , Tunísia , Testes de Sensibilidade Microbiana
14.
Plants (Basel) ; 11(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432746

RESUMO

Eucalyptus species are characterized by their richness in essential oils (EOs) with a great diversity of biological activities. This study reports the chemical composition and the phytotoxic and antibiofilm activities of the EOs of six Eucalyptus species growing in Tunisia: E. bicostata, E. gigantea, E. intertexta, E. obliqua, E. pauciflora and E. tereticornis. Four EOs were rich above all in oxygenated monoterpenes (25.3-91.4%), with eucalyptol as the main constituent. However, in the EOs of E. pauciflora and E. tereticornis, sesquiterpene hydrocarbons (28.8-54.0%) were the main class of constituents; piperitone was the main constituent of both EOs. The phytotoxicity of the EOs was tested against germination and radicle elongation of the weeds Sinapis arvensis and Lolium multiflorum and the crop Raphanus sativus, resulting in the different inhibition of seed germination and radicle elongation depending on both chemical composition and the seed tested, with remarkable phytotoxicity towards S. arvensis and R. sativus. Furthermore, almost all EOs showed antibacterial potential, resulting in significant inhibition of bacterial biofilm formation and the metabolism of Gram-positive (Staphylococcus aureus subsp. aureus and Listeria monocytogenes) and Gram-negative (Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli) bacterial strains, in addition to acting on mature biofilms. The EOs were inhibitory against all bacterial strains tested and usually reluctant to undergo the action of conventional antibiotics. Therefore, these EOs may be considered for applications both as herbicides and in food and health fields.

15.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297377

RESUMO

The complex taxonomy of Eucalyptus genus, the renewed interest in natural compounds able to combat microbial strains, the overuse of synthetic pesticides, the consequent request for alternative control methods were the reasons for this research. The essential oils (Eos) of Eucalyptus bosistoana, Eucalyptus melliodora, Eucalyptus odorata, Eucalyptus paniculata, Eucalyptus salmonopholia, and Eucalyptus transcontinentalis were analyzed by GC/MS and their potential phytotoxic activity was evaluated against the germination and radicle elongation of Sinapis arvensis, Raphanus sativus and Lolium multiflorum. The antibiofilm activity was assayed against both Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii) bacteria. Monoterpenoids were the most representative constituents in all EOs and eucalyptol was the dominant component except in E. melliodora EO, in which p-cymene was the most abundant. In phytotoxic assays, the EOs from E. odorata and E. paniculata were the most active against germination and radical elongation of the tested seeds. Finally, the Eucalyptus EOs proved their capacity to effectively inhibit the adhesion process of all five pathogen strains, with percentages often reaching and exceeding 90%. These Eucalytpus EOs could have possible employments in the food, health and agricultural fields.

16.
Plants (Basel) ; 11(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297802

RESUMO

The cultivation of different species of Eucalyptus has recently expanded in Liguria (Italy) due to the growing demand of the North European floricultural market. Eucalyptus tree branches are cut and selected for their quality, resulting in large amounts of waste biomass to be disposed of. The aim of our study was to evaluate the phytotoxic and antimicrobial activities of essential oils (EOs) from pruning wastes of E. cinerea (EC) and E. nicholii (EN), for potential applications in agriculture. Phytochemical analyses showed eucalyptol (1,8-cineole) as the major component in both EOs, but the EO yield of EN was higher than that of EC, in agreement with a significantly higher oil gland density on EN leaves. EOs from both species showed phytotoxicity on both weeds tested, but no significant inhibition on horticultural crop seed germination, except for Raphanus sativus. The EO from EC showed the strongest antibacterial activity, while the EO from EN showed the strongest antifungal activity. Concluding, EOs from Eucalyptus pruning may be used as possible alternatives to synthetic herbicides and pesticides, acting as antimicrobial and antifungal agents, thus representing a safe strategy for crop management programs.

17.
Molecules ; 27(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144554

RESUMO

The Eucalyptus genus (Myrtaceae) is characterized by a richness in essential oils (EO) with multiple biological activities. This study reports the chemical composition and the phytotoxic and antimicrobial activities of the EOs from Tunisian E.occidentalis, E.striaticalyx and E.stricklandii. The EOs were analyzed using GC/MS and their phytotoxicities were assessed against the germination and seedling growth of Sinapis arvensis, Trifolium campestre and Lolium rigidum. Antimicrobial activity was investigated against both Gram-negative (Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii) and Gram-positive (Staphylococcus aureus and Listeria monocytogenes) bacteria. The inhibition of biofilm formation and its metabolism was determined at different times. All EOs were rich in oxygenated monoterpenes (36.3-84.8%); the EO of E.occidentalis was rich in sesquiterpenes, both oxygenated and hydrocarbon (40.0% and 15.0%, respectively). Eucalyptol was the main constituent in all samples. The EOs showed phytotoxic activity on seed germination and seedling growth, depending both on chemical composition and weed. The EOs show a remarkable antibacterial potential resulting in a significant inhibition of the formation of bacterial biofilm and its metabolism, depending on the EO and the strain, with activity on the mature biofilm as well. Therefore, these Eucalyptus EOs could have potential applications both in the food and health fields.


Assuntos
Eucalyptus , Óleos Voláteis , Sesquiterpenos , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes , Escherichia coli , Eucaliptol , Eucalyptus/química , Testes de Sensibilidade Microbiana , Monoterpenos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia
18.
Antibiotics (Basel) ; 11(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35740131

RESUMO

This work aimed to evaluate the chemical composition of the essential oils (EOs) of two cultivars of Allium sativum and their antibiofilm activity against the food pathogens Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus. The crystal violet assay ascertained the susceptibility of the bacterial biofilms, while the MTT assay let to evaluations of the metabolic changes occurring in the bacterial cells within biofilms. Their chemical composition indicated some sulfuric compounds (i.e., allicin, diallyl disulfide, and allyl propyl disulfide), and decene as some of the main components of the EOs. The aerial parts and bulbs' EOs from the two cultivars showed chemical differences, which seemed to affect the antibiofilm activity. The EOs from aerial parts of 'Bianco del Veneto' inhibited the biofilm formation of L. monocytogenes and E. coli (60.55% and 40.33%, respectively). In comparison, the 'Staravec' EO inhibited the cellular metabolism of E. coli (62.44%) and S. aureus (51.52%) sessile cells. These results indicate their possible use as preserving agents in the food industry and suggest their potential exploitation in the development of new formulations to avoid or limit nosocomial infections.

19.
Foods ; 11(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35407082

RESUMO

In this work, we aimed to study the chemical composition of the essential oils from bulbs and leaves of two cultivars of Allium sativum L. and two of A. ampeloprasum L. var. holmense. Moreover, we investigated their activity against four common bacterial strains responsible for food contamination (Listeria monocytogenes, Escherichia coli, Acinetobacter baumannii, and Staphylococcus aureus) by formation of biofilms. The susceptibility of bacterial biofilms was evaluated by crystal violet assay, whereas the metabolic changes occurring in the bacterial cells were ascertained through the MTT test. The essential oils were characterized by the presence of most characteristic components, although with different composition between the species and the cultivars. The essential oils inhibited the capacity of the pathogenic bacteria to form biofilms (up to 79.85 against L. monocytogenes) and/or acted on their cell metabolism (with inhibition of 68.57% and 68.89% against L. monocytogenes and S. aureus, respectively). The capacity of the essential oils to act against these foodborne bacteria could suggests further ideas for industrial applications and confirms the versatility of these essential oils as food preservatives.

20.
Metabolites ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36676989

RESUMO

In the present study, the chemical composition of the volatile oil and methanolic extract from Ducrosia flabellifolia Boiss. was investigated. The antimicrobial, antioxidant, and anticancer activities of the methanolic extract from D. flabellifolia aerial parts were screened using experimental and computational approaches. Results have reported the identification of decanal (28.31%) and dodecanal (16.93%) as major compounds in the essential oil obtained through hydrodistillation. Farnesyl pyrophosphate, Methyl 7-desoxypurpurogallin-7-carboxylate trimethyl ether, Dihydro-Obliquin, Gummiferol, 2-Phenylaminoadenosine, and 2,4,6,8,10-dodecapentaenal, on the other hand, were the dominant compounds in the methanolic extract. Moreover, the tested extract was active against a large collection of bacteria and yeast strains with diameter of growth inhibition ranging from 6.67 ± 0.57 mm to 17.00 ± 1.73 mm, with bacteriostatic and fungicidal activities against almost all tested microorganisms. In addition, D. flabellifolia methanolic extract was dominated by phenolic compounds (33.85 ± 1.63 mg of gallic acid equivalent per gram of extract) and was able to trap DPPH• and ABTS•+ radicals with IC50 about 0.05 ± 0 mg/mL and 0.105 ± 0 mg/mL, respectively. The highest percentages of anticancer activity were recorded at 500 µg/mL for all cancer cell lines with IC50 about 240. 56 µg/mL (A-549), 202.94 µg/mL (HCT-116), and 154.44 µg/mL (MCF-7). The in-silico approach showed that D. flabellifolia identified compounds bound 1HD2, 2XCT, 2QZW, and 3LN1 with high affinities, which together with molecular interactions and the bond network satisfactorily explain the experimental results using antimicrobial, antioxidant, and anticancer assays. The obtained results highlighted the ethnopharmacological properties of the rare desertic D. flabellifolia plant species growing wild in Hail region (Saudi Arabia).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA