Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3899, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162849

RESUMO

The ability of the fungal pathogen Candida albicans to undergo a yeast-to-hypha transition is believed to be a key virulence factor, as filaments mediate tissue damage. Here, we show that virulence is not necessarily reduced in filament-deficient strains, and the results depend on the infection model used. We generate a filament-deficient strain by deletion or repression of EED1 (known to be required for maintenance of hyphal growth). Consistent with previous studies, the strain is attenuated in damaging epithelial cells and macrophages in vitro and in a mouse model of intraperitoneal infection. However, in a mouse model of systemic infection, the strain is as virulent as the wild type when mice are challenged with intermediate infectious doses, and even more virulent when using low infectious doses. Retained virulence is associated with rapid yeast proliferation, likely the result of metabolic adaptation and improved fitness, leading to high organ fungal loads. Analyses of cytokine responses in vitro and in vivo, as well as systemic infections in immunosuppressed mice, suggest that differences in immunopathology contribute to some extent to retained virulence of the filament-deficient mutant. Our findings challenge the long-standing hypothesis that hyphae are essential for pathogenesis of systemic candidiasis by C. albicans.


Assuntos
Candida albicans/metabolismo , Candidíase/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Animais , Candida albicans/genética , Candida albicans/patogenicidade , Candidíase/microbiologia , Divisão Celular/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Mutação , Neutrófilos/metabolismo , Virulência/genética
2.
Crit Rev Microbiol ; 44(2): 230-243, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28609183

RESUMO

Candida albicans is a successful colonizer of the human host, which can, under certain circumstances cause a range of clinically diverse infections. Important virulence-associated traits of the fungus, such as the dimorphic switch and biofilm formation, are controlled by the quorum sensing molecule farnesol. Given the potential of farnesol as a novel antifungal drug, there has been increasing research into the mechanism underlying farnesol sensing and action in C. albicans. However, despite the identification of various factors involved in farnesol signalling, its exact mode of action remains largely unclear. This review provides an overview of the currently known aspects of farnesol production, sensing and action within C. albicans. We also illustrate the characteristic of C. albicans to simultaneously produce and tolerate high farnesol concentrations that are lethal to other microbes. Furthermore, we summarize new literature on the role of farnesol in the interaction of C. albicans with the human host and highlight its action as a potent immunomodulatory molecule.


Assuntos
Anti-Infecciosos/metabolismo , Candida albicans/fisiologia , Farneseno Álcool/metabolismo , Percepção de Quorum , Transdução de Sinais , Candida albicans/metabolismo , Candidíase/microbiologia , Candidíase/patologia , Interações Hospedeiro-Patógeno , Humanos , Fatores Imunológicos/metabolismo
3.
Curr Genet ; 63(5): 791-797, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28247023

RESUMO

Quorum sensing, a form of molecular communication in microbial communities, is relatively well studied in bacterial species, but poorly understood in fungi. Farnesol, a quorum sensing molecule secreted by the opportunistic human pathogenic fungus Candida albicans, was the first quorum sensing molecule described in a eukaryotic organism. However, despite considerable research efforts and advances in recent years, the mechanisms behind its action remain largely elusive. Only recently, we showed that deletion of the C. albicans gene EED1 (eed1Δ), which is essential for hyphal maintenance, resulted in both increased farnesol production and hypersensitivity to farnesol, providing a link between farnesol signaling and elongated hyphal growth. This finding raised several questions concerning farnesol signaling. In this short review we use the unique phenotype of the eed1Δ mutant to summarize current hypotheses and to speculate on possible mechanisms of quorum sensing in C. albicans and its implication in fungus-host interaction, by drawing comparisons to comparatively well-studied quorum sensing systems in bacteria.


Assuntos
Fenômenos Fisiológicos Bacterianos , Candida albicans/fisiologia , Farneseno Álcool/metabolismo , Percepção de Quorum , Interações Hospedeiro-Patógeno
4.
Bio Protoc ; 7(19): e2562, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34595247

RESUMO

Here, we describe a protocol for a continuous flow system for C. albicans cultures growing adherent to a plastic surface. The protocol was adapted from a previous method established to simulate blood flow on endothelial cells (Wilson and Hube, 2010). The adapted protocol was used by us for the removal of molecules in C. albicans supernatants, especially farnesol, which accumulate over the time course of incubation and cannot be specifically depleted. The system used, however, allows various applications including the simulation of physiological flow conditions. Several example applications are given on the manufacturer's website (https://ibidi.com/perfusion-system/112-ibidi-pump-system.html).

5.
Mol Microbiol ; 103(4): 595-617, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27623739

RESUMO

Morphogenesis in Candida albicans requires hyphal initiation and maintenance, and both processes are regulated by the fungal quorum sensing molecule (QSM) farnesol. We show that deletion of C. albicans EED1, which is crucial for hyphal extension and maintenance, led to a dramatically increased sensitivity to farnesol, and thus identified the first mutant hypersensitive to farnesol. Furthermore, farnesol decreased the transient filamentation of an eed1Δ strain without inducing cell death, indicating that two separate mechanisms mediate quorum sensing and cell lysis by farnesol. To analyze the cause of farnesol hypersensitivity we constructed either hyperactive or deletion mutants of factors involved in farnesol signaling, by introducing the hyperactive RAS1G13V or pADH1-CYR1CAT allele, or deleting CZF1 or NRG1 respectively. Neither of the constructs nor the exogenous addition of dB-cAMP was able to rescue the farnesol hypersensitivity, highlighting that farnesol mediates its effects not only via the cAMP pathway. Interestingly, the eed1Δ strain also displayed increased farnesol production. When eed1Δ was grown under continuous medium flow conditions, to remove accumulating QSMs from the supernatant, maintenance of eed1Δ filamentation, although not restored, was significantly prolonged, indicating a link between farnesol sensitivity, production, and the hyphal maintenance-defect in the eed1Δ mutant strain.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Farneseno Álcool/metabolismo , Proteínas Fúngicas/genética , Hifas/crescimento & desenvolvimento , Percepção de Quorum/fisiologia , Candida albicans/genética , AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Cell Microbiol ; 18(12): 1709-1715, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27552083

RESUMO

Candida albicans is an important human opportunistic fungal pathogen which is frequently found as part of the normal human microbiota. It is well accepted that the fungus interacts with other components of the resident microbiota and that this impacts the commensal or pathogenic outcome of C. albicans colonization. Different types of interactions, including synergism or antagonism, contribute to a complex balance between the multitude of different species. Mixed biofilms of C. albicans and streptococci are a well-studied example of a mutualistic interaction often potentiating the virulence of the individual members. In contrast, other bacteria like lactobacilli are known to antagonize C. albicans, and research has just started elucidating the mechanisms behind these interactions. This scenario is even more complicated by a third player, the host. This review focuses on interactions between C. albicans and gram-positive bacteria whose investigation will without doubt ultimately help understanding C. albicans infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candidíase/imunologia , Bactérias Gram-Positivas/patogenicidade , Infecções por Bactérias Gram-Positivas/imunologia , Lactobacillaceae/patogenicidade , Antibiose/fisiologia , Aderência Bacteriana , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candidíase/microbiologia , Coinfecção , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/crescimento & desenvolvimento , Infecções por Bactérias Gram-Positivas/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Lactobacillaceae/genética , Lactobacillaceae/crescimento & desenvolvimento , Simbiose/fisiologia , Virulência
7.
Adv Appl Microbiol ; 91: 139-235, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25911234

RESUMO

Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida/fisiologia , Candidíase/microbiologia , Candida/genética , Candida/patogenicidade , Humanos , Virulência , Fatores de Virulência
8.
Cell Microbiol ; 13(8): 1286-301, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21729227

RESUMO

Salmonella enterica deploys the giant non-fimbrial adhesin SiiE to adhere to the apical side of polarized epithelial cells. The establishment of close contact is a prerequisite for subsequent invasion mediated by translocation of effector proteins of the Salmonella Pathogenicity Island 1 (SPI1)-encoded type III secretion system (T3SS). Although SiiE is secreted into the culture medium, the adhesin is retained on the bacterial envelope in the phase of highest bacterial invasiveness. To dissect the structural requirements for secretion, retention and adhesive properties, comprehensive deletional and functional analyses of various domains of SiiE were performed. We observed that ß-sheet and coiled-coil domains in the N-terminal moiety of SiiE are required for the control of SiiE retention on the surface and co-ordinated release. These results indicate a novel molecular mechanism for the control of surface display of a T1SS-secreted adhesin that acts cooperatively with the SPI1-T3SS.


Assuntos
Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Análise Mutacional de DNA , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA