Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405741

RESUMO

Myosin-Is colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by Arp2/3 complex on the surface of beads coated with myosin-I and the WCA domain of N-WASP. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates. Remarkably, myosin-I triggered symmetry breaking and comet-tail formation in dense networks resistant to spontaneous fracturing. Even with arrested actin assembly, myosin-I alone could break the network. Computational modeling recapitulated these observations suggesting myosin-I acts as a repulsive force shaping the network's architecture and boosting its force-generating capacity. We propose that myosin-I leverages its power stroke to amplify the forces generated by Arp2/3 complex-nucleated actin networks.

2.
J Biol Chem ; 299(2): 102906, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642185

RESUMO

Myosin-19 (Myo19) controls the size, morphology, and distribution of mitochondria, but the underlying role of Myo19 motor activity is unknown. Complicating mechanistic in vitro studies, the identity of the light chains (LCs) of Myo19 remains unsettled. Here, we show by coimmunoprecipitation, reconstitution, and proteomics that the three IQ motifs of human Myo19 expressed in Expi293 human cells bind regulatory light chain (RLC12B) and calmodulin (CaM). We demonstrate that overexpression of Myo19 in HeLa cells enhances the recruitment of both Myo19 and RLC12B to mitochondria, suggesting cellular association of RLC12B with the motor. Further experiments revealed that RLC12B binds IQ2 and is flanked by two CaM molecules. In vitro, we observed that the maximal speed (∼350 nm/s) occurs when Myo19 is supplemented with CaM, but not RLC12B, suggesting maximal motility requires binding of CaM to IQ-1 and IQ-3. The addition of calcium slowed actin gliding (∼200 nm/s) without an apparent effect on CaM affinity. Furthermore, we show that small ensembles of Myo19 motors attached to quantum dots can undergo processive runs over several microns, and that calcium reduces the attachment frequency and run length of Myo19. Together, our data are consistent with a model where a few single-headed Myo19 molecules attached to a mitochondrion can sustain prolonged motile associations with actin in a CaM- and calcium-dependent manner. Based on these properties, we propose that Myo19 can function in mitochondria transport along actin filaments, tension generation on multiple randomly oriented filaments, and/or pushing against branched actin networks assembled near the membrane surface.


Assuntos
Calmodulina , Miosinas , Humanos , Actinas/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Células HeLa , Miosinas/metabolismo
3.
Cytoskeleton (Hoboken) ; 80(3-4): 77-92, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36692369

RESUMO

It was proposed from cellular studies that S. pombe tropomyosin Cdc8 (Tpm) segregates into two populations due to the presence or absence of an amino-terminal acetylation that specifies which formin-mediated F-actin networks it binds, but with no supporting biochemistry. To address this mechanism in vitro, we developed methods for S. pombe actin expression in Sf9 cells. We then employed 3-color TIRF microscopy using all recombinant S. pombe proteins to probe in vitro multicomponent mechanisms involving actin, acetylated and unacetylated Tpm, formins, and myosins. Acetyl-Tpm exhibits tight binding to actin in contrast to weaker binding by unacetylated Tpm. In disagreement with the differential recruitment model, Tpm showed no preferential binding to filaments assembled by the FH1-FH2-domains of two S. pombe formins, nor did Tpm binding have any bias towards the growing formin-bound actin filament barbed end. Although our in vitro findings do not support a direct formin-tropomyosin interaction, it is possible that formins bias differential tropomyosin isoform recruitment through undiscovered mechanisms. Importantly, despite a 12% sequence divergence between skeletal and S. pombe actin, S. pombe myosins Myo2 and Myo51 exhibited similar motile behavior with these two actins, validating key prior findings with these myosins that used skeletal actin.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Tropomiosina/metabolismo , Actinas/metabolismo , Schizosaccharomyces/metabolismo , Forminas/metabolismo , Acetilação , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Proteínas Recombinantes , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
Mol Biol Cell ; 31(20): 2168-2178, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32697617

RESUMO

SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.


Assuntos
Actinas/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
5.
Mol Biol Cell ; 31(5): 335-347, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913750

RESUMO

A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on Saccharomyces cerevisiae actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapid assembly and turnover. Guided by the genetic requirements for proper cable assembly and dynamics, we show that seven evolutionarily conserved S. cerevisiae proteins (actin, formin, profilin, tropomyosin, capping protein, cofilin, and AIP1) are sufficient to reconstitute the formation of cables that undergo polarized turnover and maintain steady-state lengths similar to actin cables in vivo. Further, the removal of individual proteins from this simple in vitro reconstitution system leads to cable defects that closely approximate in vivo cable phenotypes caused by disrupting the corresponding genes. Thus, a limited set of molecular components is capable of self-organizing into dynamic, micron-scale actin structures with features similar to cables in living cells.


Assuntos
Actinas/metabolismo , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/genética , Mutação/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Cell Biol ; 217(10): 3512-3530, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30076201

RESUMO

Formins are essential actin assembly factors whose activities are controlled by a diverse array of binding partners. Until now, most formin ligands have been studied on an individual basis, leaving open the question of how multiple inputs are integrated to regulate formins in vivo. Here, we show that the F-BAR domain of Saccharomyces cerevisiae Hof1 interacts with the FH2 domain of the formin Bnr1 and blocks actin nucleation. Electron microscopy of the Hof1-Bnr1 complex reveals a novel dumbbell-shaped structure, with the tips of the F-BAR holding two FH2 dimers apart. Deletion of Hof1's F-BAR domain in vivo results in disorganized actin cables and secretory defects. The formin-binding protein Bud6 strongly alleviates Hof1 inhibition in vitro, and bud6Δ suppresses hof1Δ defects in vivo. Whereas Hof1 stably resides at the bud neck, we show that Bud6 is delivered to the neck on secretory vesicles. We propose that Hof1 and Bud6 functions are intertwined as a stationary inhibitor and a mobile activator, respectively.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/genética , Animais , Proteínas do Citoesqueleto/genética , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Domínios Proteicos , Coelhos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo
7.
Nat Commun ; 8(1): 703, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951543

RESUMO

Cytokinesis physically separates dividing cells by forming a contractile actomyosin ring. The fission yeast contractile ring has been proposed to assemble by Search-Capture-Pull-Release from cytokinesis precursor nodes that include the molecular motor type-II myosin Myo2 and the actin assembly factor formin Cdc12. By successfully reconstituting Search-Capture-Pull in vitro, we discovered that formin Cdc12 is a mechanosensor, whereby myosin pulling on formin-bound actin filaments inhibits Cdc12-mediated actin assembly. We mapped Cdc12 mechanoregulation to its formin homology 1 domain, which facilitates delivery of new actin subunits to the elongating actin filament. Quantitative modeling suggests that the pulling force of the myosin propagates through the actin filament, which behaves as an entropic spring, and thereby may stretch the disordered formin homology 1 domain and impede formin-mediated actin filament elongation. Finally, live cell imaging of mechano-insensitive formin mutant cells established that mechanoregulation of formin Cdc12 is required for efficient contractile ring assembly in vivo.The fission yeast cytokinetic ring assembles by Search-Capture-Pull-Release from precursor nodes that include formin Cdc12 and myosin Myo2. The authors reconstitute Search-Capture-Pull in vitro and find that Myo2 pulling on Cdc12-associated actin filaments mechano-inhibits Cdc12-mediated assembly, which enables proper ring assembly in vivo.


Assuntos
Actomiosina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Citoesqueleto de Actina , Actomiosina/genética , Proteínas do Citoesqueleto/genética , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Forminas , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência/métodos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/genética
8.
Proc Natl Acad Sci U S A ; 114(35): E7236-E7244, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808035

RESUMO

Studies in fission yeast Schizosaccharomyces pombe have provided the basis for the most advanced models of the dynamics of the cytokinetic contractile ring. Myo2, a class-II myosin, is the major source of tension in the contractile ring, but how Myo2 is anchored and regulated to produce force is poorly understood. To enable more detailed biochemical/biophysical studies, Myo2 was expressed in the baculovirus/Sf9 insect cell system with its two native light chains, Rlc1 and Cdc4. Milligram yields of soluble, unphosphorylated Myo2 were obtained that exhibited high actin-activated ATPase activity and in vitro actin filament motility. The fission yeast specific chaperone Rng3 was thus not required for expression or activity. In contrast to nonmuscle myosins from animal cells that require phosphorylation of the regulatory light chain for activation, phosphorylation of Rlc1 markedly reduced the affinity of Myo2 for actin. Another unusual feature of Myo2 was that, unlike class-II myosins, which generally form bipolar filamentous structures, Myo2 showed no inclination to self-assemble at approximately physiological salt concentrations, as analyzed by sedimentation velocity ultracentrifugation. This lack of assembly supports the hypothesis that clusters of Myo2 depend on interactions at the cell cortex in structural units called nodes for force production during cytokinesis.


Assuntos
Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Divisão Celular , Proteínas Contráteis , Citocinese/fisiologia , Proteínas do Citoesqueleto/metabolismo , Regulação para Baixo , Proteínas dos Microfilamentos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/fisiologia , Miosina Tipo II/genética , Miosina Tipo II/fisiologia , Miosina Tipo V/metabolismo , Miosinas/metabolismo , Fosforilação , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia
9.
Methods Mol Biol ; 1369: 137-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26519311

RESUMO

Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis.


Assuntos
Citocinese , Miosina Tipo II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Citoesqueleto de Actina/metabolismo , Citocinese/genética , Expressão Gênica , Microscopia de Fluorescência , Imagem Molecular/métodos , Miosina Tipo II/genética , Proteínas de Schizosaccharomyces pombe/genética
10.
Cytoskeleton (Hoboken) ; 72(3): 131-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25712463

RESUMO

Myosins and tropomyosins represent two cytoskeletal proteins that often work together with actin filaments in contractile and motile cellular processes. While the specialized role of tropomyosin in striated muscle myosin-II regulation is well characterized, its role in nonmuscle myosin regulation is poorly understood. We previously showed that fission yeast tropomyosin (Cdc8p) positively regulates myosin-II (Myo2p) and myosin-V (Myo52p) motors. To understand the broader implications of this regulation we examined the role of two mammalian tropomyosins (Tpm3.1cy/Tm5NM1 and Tpm4.2cy/Tm4) recently implicated in cancer cell proliferation and metastasis. Like Cdc8p, the Tpm3.1cy and Tpm4.2cy isoforms significantly enhance Myo2p and Myo52p motor activity, converting nonprocessive Myo52p molecules into processive motors that can walk along actin tracks as single molecules. In contrast to the positive regulation of Myo2p and Myo52p, Cdc8p and the mammalian tropomyosins potently inhibited skeletal muscle myosin-II, while having negligible effects on the highly processive mammalian myosin-Va. In support of a conserved role for certain tropomyosins in regulating nonmuscle actomyosin structures, Tpm3.1cy supported normal contractile ring function in fission yeast. Our work reveals that actomyosin regulation by tropomyosin is dependent on the myosin isoform, highlighting a general role for specific isoforms of tropomyosin in sorting myosin motor outputs.


Assuntos
Actomiosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Miosinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Adenosina Trifosfatases/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Éxons , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Motores Moleculares/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Plasmídeos/metabolismo , Isoformas de Proteínas/metabolismo , Schizosaccharomyces/metabolismo
11.
Bioarchitecture ; 4(1): 35-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24531330

RESUMO

Recent studies have revealed a novel mechanism of myosin regulation in which the actin-binding protein tropomyosin converts atypical type-V myosins into processive cargo transporters. To achieve this, tropomyosin's primary role appears to lie in its ability to influence myosin's enzyme kinetics, prolonging the strong actin-bound ADP/apo state to enable hand-over-hand walking of myosin-V dimers along actin tracks. Activation of myosin-V mediated transport by tropomyosin underscores its function in helping to direct cargos to specific actin tracks and subcellular destinations. This type of regulation supports the broader notion that tropomyosin plays a key role in actomyosin sorting.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Miosinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo
12.
Mol Biol Cell ; 25(1): 66-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24196839

RESUMO

A hallmark of class-V myosins is their processivity--the ability to take multiple steps along actin filaments without dissociating. Our previous work suggested, however, that the fission yeast myosin-V (Myo52p) is a nonprocessive motor whose activity is enhanced by tropomyosin (Cdc8p). Here we investigate the molecular mechanism and physiological relevance of tropomyosin-mediated regulation of Myo52p transport, using a combination of in vitro and in vivo approaches. Single molecules of Myo52p, visualized by total internal reflection fluorescence microscopy, moved processively only when Cdc8p was present on actin filaments. Small ensembles of Myo52p bound to a quantum dot, mimicking the number of motors bound to physiological cargo, also required Cdc8p for continuous motion. Although a truncated form of Myo52p that lacked a cargo-binding domain failed to support function in vivo, it still underwent actin-dependent movement to polarized growth sites. This result suggests that truncated Myo52p lacking cargo, or single molecules of wild-type Myo52p with small cargoes, can undergo processive movement along actin-Cdc8p cables in vivo. Our findings outline a mechanism by which tropomyosin facilitates sorting of transport to specific actin tracks within the cell by switching on myosin processivity.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Miosinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico Ativo , Microscopia de Fluorescência , Domínios e Motivos de Interação entre Proteínas , Imagem com Lapso de Tempo
13.
PLoS One ; 8(11): e79593, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244528

RESUMO

UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.


Assuntos
Citocinese/fisiologia , Miosina Tipo II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Miosina Tipo II/química , Miosina Tipo II/genética , Conformação Proteica , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Alinhamento de Sequência
14.
Mol Biol Cell ; 23(13): 2433-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22573890

RESUMO

Cell morphogenesis is a complex process that relies on a diverse array of proteins and pathways. We have identified a transglutaminase-like protein (Cyk3p) that functions in fission yeast morphogenesis. The phenotype of a cyk3 knockout strain indicates a primary role for Cyk3p in cytokinesis. Correspondingly, Cyk3p localizes both to the actomyosin contractile ring and the division septum, promoting ring constriction, septation, and subsequent cell separation following ring disassembly. In addition, Cyk3p localizes to polarized growth sites and plays a role in cell shape determination, and it also appears to contribute to cell integrity during stationary phase, given its accumulation as dynamic puncta at the cortex of such cells. Our results and the conservation of Cyk3p across fungi point to a role in cell wall synthesis and remodeling. Cyk3p possesses a transglutaminase domain that is essential for function, even though it lacks the catalytic active site. In a wider sense, our work illustrates the physiological importance of inactive members of the transglutaminase family, which are found throughout eukaryotes. We suggest that the proposed evolution of animal transglutaminase cross-linking activity from ancestral bacterial thiol proteases was accompanied by the emergence of a subclass whose function does not depend on enzymatic activity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinese , Morfogênese , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Polaridade Celular , Proteínas Contráteis/metabolismo , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/metabolismo , Cinética , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/fisiologia , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Deleção de Sequência , Fuso Acromático/metabolismo , Imagem com Lapso de Tempo
15.
Mol Biol Cell ; 21(6): 989-1000, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20110347

RESUMO

Myosin-II (Myo2p) and tropomyosin are essential for contractile ring formation and cytokinesis in fission yeast. Here we used a combination of in vivo and in vitro approaches to understand how these proteins function at contractile rings. We find that ring assembly is delayed in Myo2p motor and tropomyosin mutants, but occurs prematurely in cells engineered to express two copies of myo2. Thus, the timing of ring assembly responds to changes in Myo2p cellular levels and motor activity, and the emergence of tropomyosin-bound actin filaments. Doubling Myo2p levels suppresses defects in ring assembly associated with a tropomyosin mutant, suggesting a role for tropomyosin in maximizing Myo2p function. Correspondingly, tropomyosin increases Myo2p actin affinity and ATPase activity and promotes Myo2p-driven actin filament gliding in motility assays. Tropomyosin achieves this by favoring the strong actin-bound state of Myo2p. This mode of regulation reflects a role for tropomyosin in specifying and stabilizing actomyosin interactions, which facilitates contractile ring assembly in the fission yeast system.


Assuntos
Actomiosina/metabolismo , Citocinese/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Tropomiosina/metabolismo , Actomiosina/genética , Recuperação de Fluorescência Após Fotodegradação , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/genética , Tropomiosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA