Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5368, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666831

RESUMO

Sustainably managing fisheries requires regular and reliable evaluation of stock status. However, most multispecies reef fisheries around the globe tend to lack research and monitoring capacity, preventing the estimation of sustainable reference points against which stocks can be assessed. Here, combining fish biomass data for >2000 coral reefs, we estimate site-specific sustainable reference points for coral reef fisheries and use these and available catch estimates to assess the status of global coral reef fish stocks. We reveal that >50% of sites and jurisdictions with available information have stocks of conservation concern, having failed at least one fisheries sustainability benchmark. We quantify the trade-offs between biodiversity, fish length, and ecosystem functions relative to key benchmarks and highlight the ecological benefits of increasing sustainability. Our approach yields multispecies sustainable reference points for coral reef fisheries using environmental conditions, a promising means for enhancing the sustainability of the world's coral reef fisheries.


Assuntos
Recifes de Corais , Pesqueiros , Animais , Benchmarking , Biodiversidade , Ecossistema
2.
J Fish Biol ; 103(2): 378-392, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37213138

RESUMO

Sympatric flatfish predators may partition their resources in coastal environments to reduce competition and maximise foraging efficiency. However, the degree of spatial and temporal consistency in their trophic ecology is not well understood because dietary studies tend to overlook the heterogeneity of consumed prey. Increasing the spatial and temporal scale of dietary analyses can thus help to resolve predator resource use. We applied a stomach content and multi-tissue (liver and muscle) stable isotope (δ13 C, δ15 N and δ34 S) approach to investigate the feeding habits of two co-occurring flatfish predators, common dab (Limanda limanda) and European plaice (Pleuronectes platessa), across four bays on the Northumberland coast (UK) over short (hours), medium (days) and long (months) temporal scales. Stomach content analyses showed spatial consistencies in predator resource use, whereas stable isotope mixing models revealed considerable inter-bay diet variability. Stomach contents also indicated high dietary overlap between L. limanda and P. platessa, while the stable isotope data yielded low to moderate levels of overlap, with cases of complete niche separation. Furthermore, individual specialisation metrics indicated consistently low levels of specialisation among conspecifics over time. We document changes in resource partitioning in space and time, reflecting diet switching in response to local and temporal fluctuations of patchily distributed prey. This study highlights how trophic tracers integrated at multiple temporal and spatial scales (within tens of kilometres) provide a more integrative approach for assessing the trophic ecology of sympatric predators in dynamic environments.


Assuntos
Linguados , Linguado , Animais , Linguados/fisiologia , Ecologia , Estado Nutricional , Cadeia Alimentar , Isótopos/análise
3.
Proc Biol Sci ; 290(1996): 20230262, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37040803

RESUMO

Understanding the factors shaping patterns of ecological resilience is critical for mitigating the loss of global biodiversity. Throughout aquatic environments, highly mobile predators are thought to serve as important vectors of energy between ecosystems thereby promoting stability and resilience. However, the role these predators play in connecting food webs and promoting energy flow remains poorly understood in most contexts. Using carbon and nitrogen isotopes, we quantified the use of several prey resource pools (small oceanic forage, large oceanics, coral reef, and seagrass) by 17 species of elasmobranch fishes (n = 351 individuals) in The Bahamas to determine their functional diversity and roles as ecosystem links. We observed remarkable functional diversity across species and identified four major groups responsible for connecting discrete regions of the seascape. Elasmobranchs were responsible for promoting energetic connectivity between neritic, oceanic and deep-sea ecosystems. Our findings illustrate how mobile predators promote ecosystem connectivity, underscoring their functional significance and role in supporting ecological resilience. More broadly, strong predator conservation efforts in developing island nations, such as The Bahamas, are likely to yield ecological benefits that enhance the resilience of marine ecosystems to combat imminent threats such as habitat degradation and climate change.


Assuntos
Ecossistema , Elasmobrânquios , Animais , Recifes de Corais , Biodiversidade , Peixes
5.
Sci Rep ; 11(1): 20950, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697332

RESUMO

We studied the food web structure and functioning of a coral reef ecosystem in the Marquesas Islands, French Polynesia, characterized by low coral cover, high sea surface temperature and meso- to eutrophic waters. The Marquesas constitute a relevant ecosystem to understand the functioning of low diversity reefs that are also subject to global change. A multi-tracer assessment of organic matter pathways was run to delineate ecosystem functioning, using analysis of fatty acids, bulk and compound specific stable isotope analysis and stable isotopes mixing models. Macroalgae and phytoplankton were the two major food sources fueling this food web with, however, some marked seasonal variations. Specifically, zooplankton relied on phytoplankton-derived organic matter and herbivorous fishes on macroalgae-derived organic matter to a much higher extent in summer than in winter (~ 75% vs. ~ 15%, and ~ 70 to 75% vs. ~ 5 to 15%, respectively) . Despite remarkably high δ15N values for all trophic compartments, likely due to local dynamics in the nitrogen stock, trophic levels of consumers were similar to those of other coral reef ecosystems. These findings shed light on the functioning of low coral cover systems, which are expected to expand worldwide under global change.


Assuntos
Ácidos Graxos/análise , Peixes/fisiologia , Fitoplâncton/química , Alga Marinha/química , Zooplâncton/fisiologia , Animais , Recifes de Corais , Ecossistema , Cadeia Alimentar , Herbivoria , Temperatura Alta , Marcação por Isótopo , Polinésia
6.
J Anim Ecol ; 88(10): 1564-1574, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31264204

RESUMO

Coral reef food webs are complex, vary spatially and remain poorly understood. Certain large predators, notably sharks, are subsidized by pelagic production on outer reef slopes, but how widespread this dependence is across all teleost fishery target species and within atolls is unclear. North Malé Atoll (Maldives) includes oceanic barrier as well as lagoonal reefs. Nine fishery target predators constituting ca. 55% of the local fishery target species biomass at assumed trophic levels 3-5 were selected for analysis. Data were derived from carbon (δ13 C), nitrogen (δ15 N) and sulphur (δ34 S) stable isotopes from predator white dorsal muscle samples, and primary consumer species representing production source end-members. Three-source Bayesian stable isotope mixing models showed that uptake of pelagic production extends throughout the atoll, with predatory fishes showing equal planktonic reliance between inner and outer edge reefs. Median plankton contribution was 65%-80% for all groupers and 68%-88% for an emperor, a jack and snappers. Lagoonal and atoll edge predators are equally at risk from anthropogenic and climate-induced changes, which may impact the linkages they construct, highlighting the need for management plans that transcend the boundaries of this threatened ecosystem.


Assuntos
Recifes de Corais , Ecossistema , Animais , Teorema de Bayes , Peixes , Ilhas do Oceano Índico , Masculino , Oceanos e Mares , Prevalência
7.
J Fish Biol ; 94(4): 585-594, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30779136

RESUMO

The grazing behaviour of two Caribbean parrotfish, a fished species, the stoplight parrotfish Sparisoma viride and a non-fished species, the striped parrotfish Scarus iseri, were studied in the presence (fished site) and absence (marine reserve) of chronic spearfishing activity. Diurnal feeding periodicity did not differ between the sites in either species: roving individuals had significantly higher bite rates in the afternoon, while territorial individuals foraged consistently throughout the day. Mean bite rate varied between sites in both species. Abundance, biomass and bite rates of S. viride were all significantly higher within the reserve, except for roving S. viride which had a higher mean bite rate in the afternoon outside the reserve compared with within it, attributable to maximisation of feeding in the afternoon when fishing risk was lower. Scarus iseri mean abundance and bite rate were greater outside the reserve, potentially because reduction in large territorial herbivores allowed S. iseri to feed more rapidly. By reducing the grazing potential of the remaining S. viride individuals the effect of fishing is greater than would be predicted from biomass changes alone. Less grazing by S. viride would not be compensated for by the increase in grazing by S. iseri because the latter feeds on different algae. Spearfishing of key parrotfish species reduces grazing potential directly by extraction and indirectly by changing behaviour.


Assuntos
Comportamento Animal , Recifes de Corais , Peixes/fisiologia , Animais , Biomassa , Região do Caribe , Herbivoria , Densidade Demográfica , Territorialidade
8.
Ecol Evol ; 9(23): 13267-13277, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893024

RESUMO

Sympatric species may partition resources to reduce competition and facilitate co-existence. While spatial variation and specialization in feeding strategies may be prevalent among large marine predators, studies have focussed on sharks, birds, and marine mammals. We consider for the first time the isotopic niche partitioning of co-occurring, teleost reef predators spanning multiple families. Using a novel tri-isotope ellipsoid approach, we investigate the feeding strategies of seven of these species across an atoll seascape in the Maldives. We demonstrate substantial spatial variation in resource use of all predator populations. Furthermore, within each area, there was evidence of intraspecific variation in feeding behaviors that could not wholly be attributed to individual body size. Assessing species at the population level will mask these intraspecific differences in resource use. Knowledge of resource use is important for predicting how species will respond to environmental change and spatial variation should be considered when investigating trophic diversity.

9.
J Anim Ecol ; 88(3): 405-415, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548858

RESUMO

Pelagic and benthic systems usually interact, but their dynamics and production rates differ. Such differences influence the distribution, reproductive cycles, growth rates, stability and productivity of the consumers they support. Consumer preferences for, and dependence on, pelagic or benthic production are governed by the availability of these sources of production and consumer life history, distribution, habitat, behavioural ecology, ontogenetic stage and morphology. Diet studies may demonstrate the extent to which consumers feed on prey in pelagic or benthic environments. But they do not discriminate benthic production directly supported by phytoplankton from benthic production recycled through detrital pathways. The former will track the dynamics of phytoplankton production more closely than the latter. We develop and apply a new analytical method that uses carbon (C) and sulphur (S) natural abundance stable isotope data to assess the relative contribution of pelagic and benthic pathways to fish consumer production. For 13 species of fish that dominate community biomass in the northern North Sea (estimated >90% of total biomass), relative modal use of pelagic pathways ranged from <25% to >85%. Use of both C and S isotopes as opposed to just C reduced uncertainty in relative modal use estimates. Temporal comparisons of relative modal use of pelagic and benthic pathways revealed similar ranking of species dependency over 4 years, but annual variation in relative modal use within species was typically 10%-40%. For the total fish consumer biomass in the study region, the C and S method linked approximately 70% and 30% of biomass to pelagic and benthic pathways, respectively. As well as providing a new method to define consumers' links to pelagic and benthic pathways, our results demonstrate that a substantial proportion of fish biomass, and by inference production, in the northern North Sea is supported by production that has passed through transformations on the seabed.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Carbono , Ecologia , Peixes
10.
PLoS One ; 11(5): e0155752, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27191602

RESUMO

In the Philippines, very high fishing pressure coincides with the globally greatest number of shorefish species, yet no long-term fisheries data are available to explore species-level changes that may have occurred widely in the most species rich and vulnerable marine ecosystem, namely coral reefs. Through 2655 face-to-face interviews conducted between August 2012 and July 2014, we used fishers' recall of past catch rates of reef-associated finfish to infer species disappearances from catches in five marine key biodiversity areas (Lanuza Bay, Danajon Bank, Verde Island Passage, Polillo Islands and Honda Bay). We modeled temporal trends in perceived catch per unit effort (CPUE) based on fishers' reports of typical good days' catches using Generalized Linear Mixed Modelling. Fifty-nine different finfish disappeared from catches between the 1950s and 2014; 42 fish were identified to species level, two to genus, seven to family and eight to local name only. Five species occurring at all sites with the greatest number of fishers reporting zero catches were the green bumphead parrotfish (Bolbometopon muricatum), humphead wrasse (Cheilinus undulatus), African pompano (Alectis ciliaris), giant grouper (Epinephelus lanceolatus) and mangrove red snapper (Lutjanus argentimaculatus). Between the 1950s and 2014, the mean perceived CPUE of bumphead parrotfish declined by 88%, that of humphead wrasse by 82%, African pompano by 66%, giant grouper by 74% and mangrove red snapper by 64%. These declines were mainly associated with excess and uncontrolled fishing, fish life-history traits like maximum body size and socio-economic factors like access to market infrastructure and services, and overpopulation. The fishers' knowledge is indicative of extirpations where evidence for these losses was otherwise lacking. Our models provide information as basis for area-based conservation and regional resource management particularly for the more vulnerable, once common, large, yet wide-ranging reef finfish species.


Assuntos
Biodiversidade , Recifes de Corais , Espécies em Perigo de Extinção , Pesqueiros/estatística & dados numéricos , Peixes/fisiologia , Animais , Pesqueiros/economia , Peixes/classificação , Modelos Biológicos
11.
J Anim Ecol ; 84(6): 1678-89, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26344713

RESUMO

There has been ongoing flattening of Caribbean coral reefs with the loss of habitat having severe implications for these systems. Complexity and its structural components are important to fish species richness and community composition, but little is known about its role for other taxa or species-specific responses. This study reveals the importance of reef habitat complexity and structural components to different taxa of macrofauna, total species richness, and individual coral and fish species in the Caribbean. Species presence and richness of different taxa were visually quantified in one hundred 25-m(2) plots in three marine reserves in the Caribbean. Sampling was evenly distributed across five levels of visually estimated reef complexity, with five structural components also recorded: the number of corals, number of large corals, slope angle, maximum sponge and maximum octocoral height. Taking advantage of natural heterogeneity in structural complexity within a particular coral reef habitat (Orbicella reefs) and discrete environmental envelope, thus minimizing other sources of variability, the relative importance of reef complexity and structural components was quantified for different taxa and individual fish and coral species on Caribbean coral reefs using boosted regression trees (BRTs). Boosted regression tree models performed very well when explaining variability in total (82·3%), coral (80·6%) and fish species richness (77·3%), for which the greatest declines in richness occurred below intermediate reef complexity levels. Complexity accounted for very little of the variability in octocorals, sponges, arthropods, annelids or anemones. BRTs revealed species-specific variability and importance for reef complexity and structural components. Coral and fish species occupancy generally declined at low complexity levels, with the exception of two coral species (Pseudodiploria strigosa and Porites divaricata) and four fish species (Halichoeres bivittatus, H. maculipinna, Malacoctenus triangulatus and Stegastes partitus) more common at lower reef complexity levels. A significant interaction between country and reef complexity revealed a non-additive decline in species richness in areas of low complexity and the reserve in Puerto Rico. Flattening of Caribbean coral reefs will result in substantial species losses, with few winners. Individual structural components have considerable value to different species, and their loss may have profound impacts on population responses of coral and fish due to identity effects of key species, which underpin population richness and resilience and may affect essential ecosystem processes and services.


Assuntos
Antozoários/fisiologia , Biodiversidade , Recifes de Corais , Peixes/fisiologia , Animais , Antilhas Holandesas , Densidade Demográfica , Porto Rico , São Vicente e Granadinas
12.
Nature ; 520(7547): 341-4, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25855298

RESUMO

Continuing degradation of coral reef ecosystems has generated substantial interest in how management can support reef resilience. Fishing is the primary source of diminished reef function globally, leading to widespread calls for additional marine reserves to recover fish biomass and restore key ecosystem functions. Yet there are no established baselines for determining when these conservation objectives have been met or whether alternative management strategies provide similar ecosystem benefits. Here we establish empirical conservation benchmarks and fish biomass recovery timelines against which coral reefs can be assessed and managed by studying the recovery potential of more than 800 coral reefs along an exploitation gradient. We show that resident reef fish biomass in the absence of fishing (B0) averages ∼1,000 kg ha(-1), and that the vast majority (83%) of fished reefs are missing more than half their expected biomass, with severe consequences for key ecosystem functions such as predation. Given protection from fishing, reef fish biomass has the potential to recover within 35 years on average and less than 60 years when heavily depleted. Notably, alternative fisheries restrictions are largely (64%) successful at maintaining biomass above 50% of B0, sustaining key functions such as herbivory. Our results demonstrate that crucial ecosystem functions can be maintained through a range of fisheries restrictions, allowing coral reef managers to develop recovery plans that meet conservation and livelihood objectives in areas where marine reserves are not socially or politically feasible solutions.


Assuntos
Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Recifes de Corais , Ecossistema , Pesqueiros/métodos , Pesqueiros/estatística & dados numéricos , Peixes/fisiologia , Animais , Biodiversidade , Biomassa , Conservação dos Recursos Naturais/estatística & dados numéricos , Pesqueiros/normas , Herbivoria , Dinâmica Populacional , Comportamento Predatório , Fatores de Tempo
13.
Environ Monit Assess ; 187(5): 234, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25850990

RESUMO

Coral colony size-frequency distribution data offer valuable information about the ecological status of coral reefs. Such data are usually collected by divers in situ, but stereo video is being increasingly used for monitoring benthic marine communities and may be used to collect size information for coral colonies. This study compared the size-frequency distributions of coral colonies obtained by divers measuring colonies 'in situ' with digital video imagery collected using stereo video and later processed using computer software. The size-frequency distributions of the two methods were similar for corymbose colonies, although distributions were different for massive, branching and all colonies combined. The differences are mainly driven by greater abundance of colonies >50 cm and fewer colonies <10 cm recorded when using the in situ method. The stereo video method detected 93% of marked colonies >5 cm and was able to record measurements on 87% of the colonies detected. However, stereo video only detected 57% of marked colonies <5 cm, suggesting that this method may be unsuitable for assessing abundance of coral recruits. Estimates of colony size made with the stereo video were smaller than the in situ technique for all growth forms, particularly for massive morphologies. Despite differences in size distributions, community assessments, which incorporated genera, growth forms and size, were similar between the two techniques. Stereo video is suitable for monitoring coral community demographics and provided data similar to in situ measure for corymbose corals, but the ability to accurately measure massive and branching coral morphologies appeared to decline with increasing colony size.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Monitoramento Ambiental/métodos , Animais , Antozoários/classificação , Software
14.
Microbiologyopen ; 4(1): 136-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25515351

RESUMO

We analyzed the diversity of bacterial epibionts and trophic ecology of a new species of Kiwa yeti crab discovered at two hydrothermal vent fields (E2 and E9) on the East Scotia Ridge (ESR) in the Southern Ocean using a combination of 454 pyrosequencing, Sanger sequencing, and stable isotope analysis. The Kiwa epibiont communities were dominated by Epsilon- and Gammaproteobacteria. About 454 sequencing of the epibionts on 15 individual Kiwa specimen revealed large regional differences between the two hydrothermal vent fields: at E2, the bacterial community on the Kiwa ventral setae was dominated (up to 75%) by Gammaproteobacteria, whereas at E9 Epsilonproteobacteria dominated (up to 98%). Carbon stable isotope analysis of both Kiwa and the bacterial epibionts also showed distinct differences between E2 and E9 in mean and variability. Both stable isotope and sequence data suggest a dominance of different carbon fixation pathways of the epibiont communities at the two vent fields. At E2, epibionts were putatively fixing carbon via the Calvin-Benson-Bassham and reverse tricarboxylic acid cycle, while at E9 the reverse tricarboxylic acid cycle dominated. Co-varying epibiont diversity and isotope values at E2 and E9 also present further support for the hypothesis that epibionts serve as a food source for Kiwa.


Assuntos
Decápodes/microbiologia , Epsilonproteobacteria/classificação , Gammaproteobacteria/classificação , Fontes Hidrotermais/microbiologia , Microbiologia da Água , Animais , Biodiversidade , Isótopos de Carbono/análise , Epsilonproteobacteria/genética , Epsilonproteobacteria/isolamento & purificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Filogenia , Análise de Sequência de DNA
15.
Adv Mar Biol ; 69: 79-127, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25358298

RESUMO

From a fisheries perspective, the declaration of a 640,000 km² "no-take" Marine Protected Area (MPA) in the Chagos Archipelago in 2010 was preceded by inadequate consideration of the scientific rationale for protection. The entire area was already a highly regulated zone which had been subject to a well-managed fisheries licensing system. The island of Diego Garcia, the only area where there is evidence of overfishing has, because of its military base, been excluded from the MPA. The no-take mandate removes the primary source of sustenance and economic sustainability of any inhabitants, thus effectively preventing the return of the original residents who were removed for political reasons in the 1960s and 1970s. The principles of natural resource conservation and use have been further distorted by forcing offshore fishing effort to other less well-managed areas where it will have a greater negative impact on the well-being of the species that were claimed to be one of the primary beneficiaries of the declaration. A failure to engage stakeholders has resulted in challenges in both the English courts and before an international tribunal.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Humanos , Oceano Índico , Ilhas do Oceano Índico
16.
Adv Mar Biol ; 69: 325-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25358304

RESUMO

The North Sea is one of the most economically important seas in the world due to productive fisheries, extensive oil and gas fields, busy shipping routes, marine renewable energy development and recreational activity. Unsurprisingly, therefore, the use of marine protected areas (here defined widely to include fisheries closed areas and no-take marine reserves) in its management has generated considerable controversy-particularly with regards to the design of a regional ecologically coherent MPA network to meet international obligations. Drawing on three MPA processes currently occurring in the UK North Sea, we examine the real-world problems that make the designation of MPA networks challenging. The political problems include: disagreement among (and within) sectors over policy objectives and priorities, common access to fisheries resources at the EU level increasing the scale at which decisions have to be made and lack of an integrated strategy for implementing protected areas in the North Sea. The scientific problems include the patchy knowledge of benthic assemblages, limited knowledge of fishing gear-habitat interactions, and the increased risk of unforeseen externalities if human activity (predominantly fishing) is displaced from newly protected sites. Diverging stakeholder attitudes to these problems means that there is no consensus on what ecological coherence actually means. Ultimately, we caution against 'quick-fix' solutions that are based on advocacy and targets, as they create confusion and undermine trust in the planning process. We argue for a more pragmatic approach to marine protection that embraces the complexity of the social and political arena in which decisions are made.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , União Europeia , Regulamentação Governamental , Mar do Norte , Política Pública , Incerteza
17.
PLoS One ; 8(6): e65553, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762393

RESUMO

The hydrothermal vents on the East Scotia Ridge are the first to be explored in the Antarctic and are dominated by large peltospiroid gastropods, stalked barnacles (Vulcanolepas sp.) and anomuran crabs (Kiwa sp.) but their food webs are unknown. Vent fluid and macroconsumer samples were collected at three vent sites (E2, E9N and E9S) at distances of tens of metres to hundreds of kilometres apart with contrasting vent fluid chemistries to describe trophic interactions and identify potential carbon fixation pathways using stable isotopes. δ(13)C of dissolved inorganic carbon from vent fluids ranged from -4.6‰ to 0.8‰ at E2 and from -4.4‰ to 1.5‰ at E9. The lowest macroconsumer δ(13)C was observed in peltospiroid gastropods (-30.0‰ to -31.1‰) and indicated carbon fixation via the Calvin-Benson-Bassham (CBB) cycle by endosymbiotic gamma-Proteobacteria. Highest δ(13)C occurred in Kiwa sp. (-19.0‰ to -10.5‰), similar to that of the epibionts sampled from their ventral setae. Kiwa sp. δ(13)C differed among sites, which were attributed to spatial differences in the epibiont community and the relative contribution of carbon fixed via the reductive tricarboxylic acid (rTCA) and CBB cycles assimilated by Kiwa sp. Site differences in carbon fixation pathways were traced into higher trophic levels e.g. a stichasterid asteroid that predates on Kiwa sp. Sponges and anemones at the periphery of E2 assimilated a proportion of epipelagic photosynthetic primary production but this was not observed at E9N. Differences in the δ(13)C and δ(34)S values of vent macroconsumers between E2 and E9 sites suggest the relative contributions of photosynthetic and chemoautotrophic carbon fixation (rTCA v CBB) entering the hydrothermal vent food webs vary between the sites.


Assuntos
Cadeia Alimentar , Fontes Hidrotermais/química , Fontes Hidrotermais/microbiologia , Comportamento Predatório/fisiologia , Análise Espacial , Análise de Variância , Animais , Regiões Antárticas , Isótopos de Carbono , Geografia , Compostos Inorgânicos/análise , Marcação por Isótopo
18.
Conserv Biol ; 26(6): 995-1004, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22971046

RESUMO

Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life-form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained.


Assuntos
Antozoários/fisiologia , Mudança Climática , Conservação dos Recursos Naturais , Recifes de Corais , Peixes/fisiologia , Alga Marinha/fisiologia , Animais , Biomassa , Temperatura Alta/efeitos adversos , Dinâmica Populacional , Seicheles , Fatores de Tempo
19.
PLoS Biol ; 10(1): e1001234, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22235194

RESUMO

Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.


Assuntos
Biodiversidade , Ecossistema , Fontes Hidrotermais , Água do Mar/química , Animais , Regiões Antárticas , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Crustáceos/classificação , Crustáceos/genética , Crustáceos/crescimento & desenvolvimento , Decápodes/classificação , Decápodes/genética , Decápodes/crescimento & desenvolvimento , Complexo IV da Cadeia de Transporte de Elétrons/genética , Gastrópodes/classificação , Gastrópodes/genética , Gastrópodes/crescimento & desenvolvimento , Geografia , Sulfeto de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Sódio/metabolismo , Especificidade da Espécie , Temperatura
20.
PLoS Biol ; 9(4): e1000606, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21483714

RESUMO

Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas.


Assuntos
Biodiversidade , Recifes de Corais , Peixes , Animais , Biomassa , Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente , Humanos , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA