Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37349108

RESUMO

BACKGROUND AND OBJECTIVES: In the multiple sclerosis (MS) brain, chronic active lesions can be detected using MRI- and PET-based methods. In this study, we investigated whether the frequency of TSPO-PET-detectable chronic active lesions associates with disease progression measured using the Expanded Disability Status Scale (EDSS) at 5-year follow-up. METHODS: Chronic lesion-associated innate immune cell activation was evaluated using TSPO-PET in 82 patients with MS. Chronic lesions were categorized into rim-active, inactive, and overall active lesion subtypes based on innate immune cell activation patterns in the lesion core and at the 2-mm perilesional rim. Logistic regression was used to identify best predictors of progression. RESULTS: Twenty-one patients experienced disability progression during the follow-up. These patients had a significantly higher proportion of rim-active lesions (p < 0.001) and a significantly lower proportion of inactive lesions (p = 0.001) compared with nonprogressed patients. The results were similar in the patient group having no relapses during the follow-up (60 patients, 14 experienced progression). In logistic regression modeling, the categorized variable "patients with >10% rim-active lesions and ≤50% inactive lesions of all chronic lesions" predicted disease progression in the entire cohort (OR = 26.8, p < 0.001) and in the group free of relapses (OR = 34.8, p = 0.002). DISCUSSION: The results show that single TSPO-PET-based in vivo lesion phenotyping of chronic MS lesions provides a strong predictor for MS disease progression. This emphasizes the significance of chronic active lesions in disability accumulation in MS.


Assuntos
Esclerose Múltipla , Humanos , Encéfalo/patologia , Doença Crônica , Imageamento por Ressonância Magnética , Progressão da Doença , Receptores de GABA
2.
Brain Commun ; 4(1): fcab301, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34993478

RESUMO

Chronic active lesions are promotors of neurodegeneration and disease progression in multiple sclerosis. They harbour a dense rim of activated innate immune cells at the lesion edge, which promotes lesion growth and thereby induces damage. Conventional MRI is of limited help in identifying the chronic active lesions, so alternative imaging modalities are needed. Objectives were to develop a PET-based automated analysis method for phenotyping of chronic lesions based on lesion-associated innate immune cell activation and to comprehensively evaluate the prevalence of these lesions in the various clinical subtypes of multiple sclerosis, and their association with disability. In this work, we use 18 kDa translocator protein-PET imaging for phenotyping chronic multiple sclerosis lesions at a large scale. For this, we identified 1510 white matter T1-hypointense lesions from 91 multiple sclerosis patients (67 relapsing-remitting patients and 24 secondary progressive patients). Innate immune cell activation at the lesion rim was measured using PET imaging and the 18 kDa translocator protein-binding radioligand 11C-PK11195. A T1-hypointense lesion was classified as rim-active if the distribution volume ratio of 11C-PK11195-binding was low in the plaque core and considerably higher at the plaque edge. If no significant ligand binding was observed, the lesion was classified as inactive. Plaques that had considerable ligand binding both in the core and at the rim were classified as overall-active. Conventional MRI and disability assessment using the Expanded Disability Status Scale were performed at the time of PET imaging. In the secondary progressive cohort, an average of 19% (median, interquartile range: 11-26) of T1 lesions were rim-active in each individual patient, compared to 10% (interquartile range: 0-20) among relapsing-remitting patients (P = 0.009). Secondary progressive patients had a median of 3 (range: 0-11) rim-active lesions, versus 1 (range: 0-18) among relapsing-remitting patients (P = 0.029). Among those patients who had rim-active lesions (n = 63), the average number of active voxels at the rim was higher among secondary progressive compared to relapsing-remitting patients (median 158 versus 74; P = 0.022). The number of active voxels at the rim correlated significantly with the Expanded Disability Status Scale (R = 0.43, P < 0.001), and the volume of the rim-active lesions similarly correlated with the Expanded Disability Status Scale (R = 0.45, P < 0.001). Our study is the first to report in vivo phenotyping of chronic lesions at large scale, based on 18 kDa translocator protein-PET. Patients with higher disability displayed a higher proportion of rim-active lesions. The in vivo lesion phenotyping methodology offers a new tool for individual assessment of smouldering (rim-active) lesion burden.

3.
Brain ; 143(11): 3318-3330, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33006604

RESUMO

Overactivation of microglia is associated with most neurodegenerative diseases. In this study we examined whether PET-measurable innate immune cell activation predicts multiple sclerosis disease progression. Activation of microglia/macrophages was measured using the 18-kDa translocator protein (TSPO)-binding radioligand 11C-PK11195 and PET imaging in 69 patients with multiple sclerosis and 18 age- and sex-matched healthy controls. Radioligand binding was evaluated as the distribution volume ratio from dynamic PET images. Conventional MRI and disability measurements using the Expanded Disability Status Scale were performed for patients at baseline and 4.1 ± 1.9 (mean ± standard deviation) years later. Fifty-one (74%) of the patients were free of relapses during the follow-up period. Patients had increased activation of innate immune cells in the normal-appearing white matter and in the thalamus compared to the healthy control group (P = 0.033 and P = 0.003, respectively, Wilcoxon). Forward-type stepwise logistic regression was used to assess the best variables predicting disease progression. Baseline innate immune cell activation in the normal-appearing white matter was a significant predictor of later progression when the entire multiple sclerosis cohort was assessed [odds ratio (OR) = 4.26; P = 0.048]. In the patient subgroup free of relapses there was an association between macrophage/microglia activation in the perilesional normal-appearing white matter and disease progression (OR = 4.57; P = 0.013). None of the conventional MRI parameters measured at baseline associated with later progression. Our results strongly suggest that innate immune cell activation contributes to the diffuse neural damage leading to multiple sclerosis disease progression independent of relapses.


Assuntos
Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Avaliação da Deficiência , Progressão da Doença , Feminino , Humanos , Isoquinolinas , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Ensaio Radioligante , Recidiva , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA