Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2190, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467602

RESUMO

The precise temporal coordination of neural activity is crucial for brain function. In the hippocampus, this precision is reflected in the oscillatory rhythms observed in CA1. While it is known that a balance between excitatory and inhibitory activity is necessary to generate and maintain these oscillations, the differential contribution of feedforward and feedback inhibition remains ambiguous. Here we use conditional genetics to chronically silence CA1 pyramidal cell transmission, ablating the ability of these neurons to recruit feedback inhibition in the local circuit, while recording physiological activity in mice. We find that this intervention leads to local pathophysiological events, with ripple amplitude and intrinsic frequency becoming significantly larger and spatially triggered local population spikes locked to the trough of the theta oscillation appearing during movement. These phenotypes demonstrate that feedback inhibition is crucial in maintaining local sparsity of activation and reveal the key role of lateral inhibition in CA1 in shaping circuit function.


Assuntos
Hipocampo , Células Piramidais , Camundongos , Animais , Retroalimentação , Hipocampo/fisiologia , Células Piramidais/fisiologia , Neurônios , Região CA1 Hipocampal/fisiologia , Interneurônios/fisiologia , Potenciais de Ação/fisiologia
2.
Neuron ; 109(22): 3674-3687.e7, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34555316

RESUMO

The structured reactivation of hippocampal neuronal ensembles during fast synchronous oscillatory events, termed sharp-wave ripples (SWRs), has been suggested to play a crucial role in the storage and use of memory. Activity in both the CA2 and CA3 subregions can precede this population activity in CA1, and chronic inhibition of either region alters SWR oscillations. However, the precise contribution of CA2 to the oscillation, as well as to the reactivation of CA1 neurons within it, remains unclear. Here, we employ chemogenetics to transiently silence CA2 pyramidal cells in mice, and we observe that although SWRs still occur, the reactivation of CA1 pyramidal cell ensembles within the events lose both temporal and informational precision. These observations suggest that CA2 activity contributes to the fidelity of experience-dependent hippocampal replay.


Assuntos
Hipocampo , Células Piramidais , Animais , Hipocampo/fisiologia , Camundongos , Neurônios , Células Piramidais/fisiologia
3.
Front Behav Neurosci ; 15: 710725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354574

RESUMO

Chronic and acute stress differentially affect behavior as well as the structural integrity of the hippocampus, a key brain region involved in cognition and memory. However, it remains unclear if and how the facilitatory effects of acute stress on hippocampal information coding are disrupted as the stress becomes chronic. To examine this, we compared the impact of acute and chronic stress on neural activity in the CA1 subregion of male mice subjected to a chronic immobilization stress (CIS) paradigm. We observed that following first exposure to stress (acute stress), the spatial information encoded in the hippocampus sharpened, and the neurons became increasingly tuned to the underlying theta oscillations in the local field potential (LFP). However, following repeated exposure to the same stress (chronic stress), spatial tuning was poorer and the power of both the slow-gamma (30-50 Hz) and fast-gamma (55-90 Hz) oscillations, which correlate with excitatory inputs into the region, decreased. These results support the idea that acute and chronic stress differentially affect neural computations carried out by hippocampal circuits and suggest that acute stress may improve cognitive processing.

4.
Neurobiol Stress ; 14: 100327, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33937446

RESUMO

Adverse effects of chronic stress include anxiety, depression, and memory deficits. Some of these stress-induced behavioural deficits are mediated by impaired hippocampal function. Much of our current understanding about how stress affects the hippocampus has been derived from post-mortem analyses of brain slices at fixed time points. Consequently, neural signatures of an ongoing stressful experiences in the intact brain of awake animals and their links to later hippocampal dysfunction remain poorly understood. Further, no information is available on the impact of stress on sharp-wave ripples (SPW-Rs), high frequency oscillation transients crucial for memory consolidation. Here, we used in vivo tetrode recordings to analyze the dynamic impact of 10 days of immobilization stress on neural activity in area CA1 of mice. While there was a net decrease in pyramidal cell activity in stressed animals, a greater fraction of CA1 spikes occurred specifically during sharp-wave ripples, resulting in an increase in neuronal synchrony. After repeated stress some of these alterations were visible during rest even in the absence of stress. These findings offer new insights into stress-induced changes in ripple-spike interactions and mechanisms through which chronic stress may interfere with subsequent information processing.

5.
Elife ; 102021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34003113

RESUMO

The hippocampus is critical for memory formation. The hypothalamic supramammillary nucleus (SuM) sends long-range projections to hippocampal area CA2. While the SuM-CA2 connection is critical for social memory, how this input acts on the local circuit is unknown. Using transgenic mice, we found that SuM axon stimulation elicited mixed excitatory and inhibitory responses in area CA2 pyramidal neurons (PNs). Parvalbumin-expressing basket cells were largely responsible for the feedforward inhibitory drive of SuM over area CA2. Inhibition recruited by the SuM input onto CA2 PNs increased the precision of action potential firing both in conditions of low and high cholinergic tone. Furthermore, SuM stimulation in area CA2 modulated CA1 activity, indicating that synchronized CA2 output drives a pulsed inhibition in area CA1. Hence, the network revealed here lays basis for understanding how SuM activity directly acts on the local hippocampal circuit to allow social memory encoding.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA2 Hipocampal/fisiologia , Hipotálamo/fisiologia , Rede Nervosa/fisiologia , Potenciais de Ação , Animais , Linhagem Celular , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Piramidais/fisiologia
6.
Nature ; 586(7828): 270-274, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32999460

RESUMO

The ability to recognize information that is incongruous with previous experience is critical for survival. Novelty signals have therefore evolved in the mammalian brain to enhance attention, perception and memory1,2. Although the importance of regions such as the ventral tegmental area3,4 and locus coeruleus5 in broadly signalling novelty is well-established, these diffuse monoaminergic transmitters have yet to be shown to convey specific information on the type of stimuli that drive them. Whether distinct types of novelty, such as contextual and social novelty, are differently processed and routed in the brain is unknown. Here we identify the supramammillary nucleus (SuM) as a novelty hub in the hypothalamus6. The SuM region is unique in that it not only responds broadly to novel stimuli, but also segregates and selectively routes different types of information to discrete cortical targets-the dentate gyrus and CA2 fields of the hippocampus-for the modulation of mnemonic processing. Using a new transgenic mouse line, SuM-Cre, we found that SuM neurons that project to the dentate gyrus are activated by contextual novelty, whereas the SuM-CA2 circuit is preferentially activated by novel social encounters. Circuit-based manipulation showed that divergent novelty channelling in these projections modifies hippocampal contextual or social memory. This content-specific routing of novelty signals represents a previously unknown mechanism that enables the hypothalamus to flexibly modulate select components of cognition.


Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Animais , Região CA2 Hipocampal/citologia , Região CA2 Hipocampal/fisiologia , Cognição , Giro Denteado/citologia , Giro Denteado/fisiologia , Feminino , Hipotálamo Posterior/citologia , Hipotálamo Posterior/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Interação Social
7.
Cell Rep ; 29(12): 3835-3846.e5, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851917

RESUMO

The long-term storage of episodic memory requires communication between prefrontal cortex and hippocampus. However, how consolidation alters dynamic interactions between these regions during subsequent recall remains unexplored. Here we perform simultaneous electrophysiological recordings from anterior cingulate cortex (ACC) and hippocampal CA1 in mice during recall of recent and remote contextual fear memory. We find that, in contrast to recent memory, remote memory recall is accompanied by increased ACC-CA1 synchronization at multiple frequency bands. The augmented ACC-CA1 interaction is associated with strengthened coupling among distally spaced CA1 neurons, suggesting an ACC-driven organization of a sparse code. This robust shift in physiology permits a support vector machine classifier to accurately determine memory age on the basis of the ACC-CA1 synchronization pattern. Our findings reveal that memory consolidation alters the dynamic coupling of the prefrontal-hippocampal circuit and results in a physiological signature of memory age.


Assuntos
Região CA1 Hipocampal/fisiologia , Medo/fisiologia , Giro do Cíngulo/fisiologia , Memória de Longo Prazo/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal , Aprendizado de Máquina , Masculino , Consolidação da Memória/fisiologia , Camundongos , Vias Neurais/fisiologia , Máquina de Vetores de Suporte
8.
Front Cell Neurosci ; 12: 138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867369

RESUMO

p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5), a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice.

9.
Elife ; 72018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29485402

RESUMO

Down syndrome, the leading genetic cause of intellectual disability, results from an extra-copy of chromosome 21. Mice engineered to model this aneuploidy exhibit Down syndrome-like memory deficits in spatial and contextual tasks. While abnormal neuronal function has been identified in these models, most studies have relied on in vitro measures. Here, using in vivo recording in the Dp(16)1Yey model, we find alterations in the organization of spiking of hippocampal CA1 pyramidal neurons, including deficits in the generation of complex spikes. These changes lead to poorer spatial coding during exploration and less coordinated activity during sharp-wave ripples, events involved in memory consolidation. Further, the density of CA1 inhibitory neurons expressing neuropeptide Y, a population key for the generation of pyramidal cell bursts, were significantly increased in Dp(16)1Yey mice. Our data refine the 'over-suppression' theory of Down syndrome pathophysiology and suggest specific neuronal subtypes involved in hippocampal dysfunction in these model mice.


Assuntos
Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/fisiopatologia , Síndrome de Down/patologia , Síndrome de Down/fisiopatologia , Memória , Potenciais de Ação , Animais , Região CA1 Hipocampal/química , Modelos Animais de Doenças , Camundongos , Neuropeptídeo Y/análise
10.
Neuron ; 94(3): 642-655.e9, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28472661

RESUMO

Hippocampal CA2 pyramidal cells project into both the neighboring CA1 and CA3 subfields, leaving them well positioned to influence network physiology and information processing for memory and space. While recent work has suggested unique roles for CA2, including encoding position during immobility and generating ripple oscillations, an interventional examination of the integrative functions of these connections has yet to be reported. Here we demonstrate that CA2 recruits feedforward inhibition in CA3 and that chronic genetically engineered shutdown of CA2-pyramidal-cell synaptic transmission consequently results in increased excitability of the recurrent CA3 network. In behaving mice, this led to spatially triggered episodes of network-wide hyperexcitability during exploration accompanied by the emergence of high-frequency discharges during rest. These findings reveal CA2 as a regulator of network processing in hippocampus and suggest that CA2-mediated inhibition in CA3 plays a key role in establishing the dynamic excitatory and inhibitory balance required for proper network function.


Assuntos
Região CA2 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Ritmo Teta/fisiologia , Animais , Região CA2 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Hipocampo/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Toxina Tetânica/genética , Toxina Tetânica/metabolismo
11.
eNeuro ; 3(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022627

RESUMO

Epilepsy is a neurological disorder defined by the presence of seizure activity, manifest both behaviorally and as abnormal activity in neuronal networks. An established model to study the disorder in rodents is the systemic injection of kainic acid, an excitatory neurotoxin that at low doses quickly induces behavioral and electrophysiological seizures. Although the CA3 region of the hippocampus has been suggested to be crucial for kainic acid-induced seizure, because of its strong expression of kainate glutamate receptors and its high degree of recurrent connectivity, the precise role of excitatory transmission in CA3 in the generation of seizure and the accompanying increase in neuronal oscillations remains largely untested. Here we use transgenic mice in which CA3 pyramidal cell synaptic transmission can be inducibly silenced in the adult to demonstrate CA3 excitatory output is required for both the generation of epileptiform oscillatory activity and the progression of behavioral seizures.


Assuntos
Região CA3 Hipocampal/fisiopatologia , Modelos Animais de Doenças , Ácido Caínico/administração & dosagem , Células Piramidais/fisiologia , Convulsões/fisiopatologia , Animais , Ondas Encefálicas/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/efeitos dos fármacos , Convulsões/induzido quimicamente , Transmissão Sináptica/efeitos dos fármacos , Toxina Tetânica/genética
12.
Hippocampus ; 25(1): 38-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25139366

RESUMO

Stress alters the function of many physiological processes throughout the body, including in the brain. A neural circuit particularly vulnerable to the effects of stress is the hippocampus, a key component of the episodic and spatial memory system in both humans and rodents. Earlier studies have provided snapshots of morphological, molecular, physiological and behavioral changes in the hippocampus following either acute or repeated stress. However, the cumulative impact of repeated stress on in vivo hippocampal physiology remains unexplored. Here we report the stress-induced modulation of the spatially receptive fields of the hippocampal CA1 'place cells' as mice explore familiar and novel tracks after 5 and 10 days of immobilization stress. We find that similar to what has been observed following acute stress, five days of repeated stress results in decreased excitability of CA1 pyramidal cells. Following ten days of chronic stress, however, this decreased hippocampal excitability is no longer evident, suggesting adaptation may have occurred. In addition to these changes in neuronal excitability, we find deficient context discrimination, wherein both short-term and chronic stress impair the ability of the hippocampus to unambiguously distinguish novel and familiar environments. These results suggest that a loss of network flexibility may underlie some of the behavioral deficits accompanying chronic stress.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Discriminação Psicológica/fisiologia , Generalização Psicológica/fisiologia , Memória Espacial/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Comportamento Animal/fisiologia , Região CA1 Hipocampal/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
13.
J Neurosci ; 34(8): 3056-66, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24553945

RESUMO

Contextual learning involves associating cues with an environment and relating them to past experience. Previous data indicate functional specialization within the hippocampal circuit: the dentate gyrus (DG) is crucial for discriminating similar contexts, whereas CA3 is required for associative encoding and recall. Here, we used Arc/H1a catFISH imaging to address the contribution of the largely overlooked CA2 region to contextual learning by comparing ensemble codes across CA3, CA2, and CA1 in mice exposed to familiar, altered, and novel contexts. Further, to manipulate the quality of information arriving in CA2 we used two hippocampal mutant mouse lines, CA3-NR1 KOs and DG-NR1 KOs, that result in hippocampal CA3 neuronal activity that is uncoupled from the animal's sensory environment. Our data reveal largely coherent responses across the CA axis in control mice in purely novel or familiar contexts; however, in the mutant mice subject to these protocols the CA2 response becomes uncoupled from CA1 and CA3. Moreover, we show in wild-type mice that the CA2 ensemble is more sensitive than CA1 and CA3 to small changes in overall context. Our data suggest that CA2 may be tuned to remap in response to any conflict between stored and current experience.


Assuntos
Região CA2 Hipocampal/fisiologia , Aprendizagem/fisiologia , Animais , Comportamento Animal/fisiologia , Sinais (Psicologia) , Proteínas do Citoesqueleto/fisiologia , Meio Ambiente , Hipocampo/fisiologia , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/fisiologia , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/fisiologia , RNA/biossíntese , RNA/genética , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Sensação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA