Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328053

RESUMO

Cytosolic aggregation of the nuclear protein TDP-43 is associated with many neurodegenerative diseases, but the triggers for TDP-43 aggregation are still debated. Here, we demonstrate that TDP-43 aggregation requires a double event. One is up-concentration in stress granules beyond a threshold, and the other is oxidative stress. These two events collectively induce intra-condensate demixing, giving rise to a dynamic TDP-43 enriched phase within stress granules, which subsequently transitions into pathological aggregates. Mechanistically, intra-condensate demixing is triggered by local unfolding of the RRM1 domain for intermolecular disulfide bond formation and by increased hydrophobic patch interactions in the C-terminal domain. By engineering TDP-43 variants resistant to intra-condensate demixing, we successfully eliminate pathological TDP-43 aggregates in cells. We conclude that up-concentration inside condensates and simultaneous exposure to environmental stress could be a general pathway for protein aggregation, with intra-condensate demixing constituting a key intermediate step.

2.
Nat Struct Mol Biol ; 30(12): 1958-1969, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049566

RESUMO

Transcription factors are among the most attractive therapeutic targets but are considered largely 'undruggable' in part due to the intrinsically disordered nature of their activation domains. Here we show that the aromatic character of the activation domain of the androgen receptor, a therapeutic target for castration-resistant prostate cancer, is key for its activity as transcription factor, allowing it to translocate to the nucleus and partition into transcriptional condensates upon activation by androgens. On the basis of our understanding of the interactions stabilizing such condensates and of the structure that the domain adopts upon condensation, we optimized the structure of a small-molecule inhibitor previously identified by phenotypic screening. The optimized compounds had more affinity for their target, inhibited androgen-receptor-dependent transcriptional programs, and had an antitumorigenic effect in models of castration-resistant prostate cancer in cells and in vivo. These results suggest that it is possible to rationally optimize, and potentially even to design, small molecules that target the activation domains of oncogenic transcription factors.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Receptores Androgênicos/química , Androgênios/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Domínios Proteicos , Fatores de Transcrição , Linhagem Celular Tumoral
3.
Curr Opin Cell Biol ; 77: 102089, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696872

RESUMO

Epithelial junctions are transmembrane protein complexes that regulate cell adhesion, cell polarity, tissue permeability, and tissue mechanics. Most junctional complexes contain membrane attached cytoplasmic plaques that regulate junction assembly and are composed of multivalent scaffold proteins. In this review, we discuss phase separation of multivalent proteins as a general process that drives assembly of many membrane-less cellular compartments. And we summarise recent evidence that phase separation of junctional scaffold proteins is involved in the assembly of tight junctions and focal adhesions.


Assuntos
Condensados Biomoleculares , Células Epiteliais , Membrana Celular , Polaridade Celular/fisiologia , Proteínas/metabolismo , Junções Íntimas/metabolismo
4.
Cell ; 179(4): 923-936.e11, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675499

RESUMO

Tight junctions are cell-adhesion complexes that seal tissues and are involved in cell polarity and signaling. Supra-molecular assembly and positioning of tight junctions as continuous networks of adhesion strands are dependent on the membrane-associated scaffolding proteins ZO1 and ZO2. To understand how zona occludens (ZO) proteins organize junction assembly, we performed quantitative cell biology and in vitro reconstitution experiments. We discovered that ZO proteins self-organize membrane-attached compartments via phase separation. We identified the multivalent interactions of the conserved PDZ-SH3-GuK supra-domain as the driver of phase separation. These interactions are regulated by phosphorylation and intra-molecular binding. Formation of condensed ZO protein compartments is sufficient to specifically enrich and localize tight-junction proteins, including adhesion receptors, cytoskeletal adapters, and transcription factors. Our results suggest that an active-phase transition of ZO proteins into a condensed membrane-bound compartment drives claudin polymerization and coalescence of a continuous tight-junction belt.


Assuntos
Junções Íntimas/genética , Proteínas da Zônula de Oclusão/genética , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-2/genética , Animais , Sítios de Ligação/genética , Adesão Celular/genética , Polaridade Celular/genética , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Proteínas de Membrana/genética , Domínios PDZ/genética , Fosfoproteínas/genética , Fosforilação/genética , Ligação Proteica/genética , Transdução de Sinais/genética , Junções Íntimas/metabolismo , Proteínas da Zônula de Oclusão/química , Proteínas da Zônula de Oclusão/ultraestrutura , Proteína da Zônula de Oclusão-1/química , Proteína da Zônula de Oclusão-1/ultraestrutura , Proteína da Zônula de Oclusão-2/química , Proteína da Zônula de Oclusão-2/ultraestrutura , Domínios de Homologia de src/genética
5.
Chempluschem ; 82(4): 638-646, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31961584

RESUMO

Polyacrylic-acid-coated ultra-small super-paramagnetic iron oxide nanoparticles were surface-modified with low-molecular-weight sulfobetaines or 3-(diethylamino)propylamine in order to generate nanoparticles with zwitterionic character (ZW-NPs). The ZW-NPs proved highly resistant to serum protein corona formation in vitro, as revealed by atomic force microscopy, SDS-PAGE and proteomics analysis, and exhibited low cytotoxicity towards A431 and HEK293 cells. The presence of unreacted carboxylic acid groups enabled additional functionalization with fluorescent (Cy5) and radioactive [64 Cu-dmptacn; dmptacn=1,4-bis(2-pyridinylmethyl)-1,4,7-triazacyclononane] moieties. Overall, the ZW-NPs represent promising platforms for the development of new multimodal diagnostic/therapeutic agents possessing "stealth" properties.

6.
Small ; 10(13): 2516-29, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24687857

RESUMO

Nanoparticles represent highly promising platforms for the development of imaging and therapeutic agents, including those that can either be detected via more than one imaging technique (multi-modal imaging agents) or used for both diagnosis and therapy (theranostics). A major obstacle to their medical application and translation to the clinic, however, is the fact that many accumulate in the liver and spleen as a result of opsonization and scavenging by the mononuclear phagocyte system. This focused review summarizes recent efforts to develop zwitterionic-coatings to counter this issue and render nanoparticles more biocompatible. Such coatings have been found to greatly reduce the rate and/or extent of non-specific adsorption of proteins and lipids to the nanoparticle surface, thereby inhibiting production of the "biomolecular corona" that is proposed to be a universal feature of nanoparticles within a biological environment. Additionally, in vivo studies have demonstrated that larger-sized nanoparticles with a zwitterionic coating have extended circulatory lifetimes, while those with hydrodynamic diameters of ≤5 nm exhibit small-molecule-like pharmacokinetics, remaining sufficiently small to pass through the fenestrae and slit pores during glomerular filtration within the kidneys, and enabling efficient excretion via the urine. The larger particles represent ideal candidates for use as blood pool imaging agents, whilst the small ones provide a highly promising platform for the future development of theranostics with reduced side effect profiles and superior dose delivery and image contrast capabilities.


Assuntos
Nanopartículas , Fagócitos/metabolismo , Materiais Biocompatíveis , Humanos , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA