RESUMO
OBJECTIVE: Training clinician-scientists is a primary objective of many academic neurology departments, as these individuals are uniquely positioned to perform insightful clinical or laboratory-based research informed both by clinical knowledge and their own experiences caring for patients. Despite its importance, training clinician-scientists has perhaps never been so challenging. The National Institute of Neurologic Disorders and Stroke (NINDS) R25 program was designed in an attempt to support these individuals, decrease the time needed to obtain National Institutes of Health K awards, and to help educate a cohort of trainees preparing for a career in academic neurology. We endeavored to describe the structure and features of the program while examining its outcomes. METHODS: R25 outcome data from 2009 to 2024 were reviewed. Statistical comparisons were made using 2-sided Mann-Whitney U testing. RESULTS: A total of 67% of adult neurologists who received an R25 had a successful application for a National Institutes of Health K award compared with 45% of adult neurologists who had not received R25 support (p < 0.0001). Among child neurologists, 73% who applied went on to receive K funding after R25 support, compared with 45% who had not been part of the R25 program (p < 0.001). The average time between completion of residency and obtaining a K award for R25 participants was decreased by 26 months among those with an MD/PhD degree, and 32 months for those with an MD degree compared with non-R25 individuals. INTERPRETATION: The R25 program has been successful in achieving its training goals, but stands as only one component of support for aspiring clinician-scientists. Investments and commitments made by academic neurology departments are key to supporting this success. ANN NEUROL 2024.
RESUMO
Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability1, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function.
Assuntos
Cognição , Embrião de Mamíferos , Desenvolvimento Embrionário , Histona Desmetilases , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Ansiedade , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Memória , Camundongos Knockout , Mutação , Neurogênese/genética , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
Many genes that drive normal cellular development also contribute to oncogenesis. Medulloblastoma (MB) tumors likely arise from neuronal progenitors in the cerebellum, and we hypothesized that the heterogeneity observed in MBs with sonic hedgehog (SHH) activation could be due to differences in developmental pathways. To investigate this question, here we perform single-nucleus RNA sequencing on highly differentiated SHH MBs with extensively nodular histology and observed malignant cells resembling each stage of canonical granule neuron development. Through innovative computational approaches, we connect these results to published datasets and find that some established molecular subtypes of SHH MB appear arrested at different developmental stages. Additionally, using multiplexed proteomic imaging and MALDI imaging mass spectrometry, we identify distinct histological and metabolic profiles for highly differentiated tumors. Our approaches are applicable to understanding the interplay between heterogeneity and differentiation in other cancers and can provide important insights for the design of targeted therapies.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Proteínas Hedgehog/genética , Meduloblastoma/genética , Proteômica , Cerebelo , Neoplasias Cerebelares/genéticaRESUMO
PURPOSE: Clinically ascertained variants are under-utilized in neurodevelopmental disorder research. We established the Brain Gene Registry (BGR) to coregister clinically identified variants in putative brain genes with participant phenotypes. Here, we report 179 genetic variants in the first 179 BGR registrants and analyze the proportion that were novel to ClinVar at the time of entry and those that were absent in other disease databases. METHODS: From 10 academically affiliated institutions, 179 individuals with 179 variants were enrolled into the BGR. Variants were cross-referenced for previous presence in ClinVar and for presence in 6 other genetic databases. RESULTS: Of 179 variants in 76 genes, 76 (42.5%) were novel to ClinVar, and 62 (34.6%) were absent from all databases analyzed. Of the 103 variants present in ClinVar, 37 (35.9%) were uncertain (ClinVar aggregate classification of variant of uncertain significance or conflicting classifications). For 5 variants, the aggregate ClinVar classification was inconsistent with the interpretation from the BGR site-provided classification. CONCLUSION: A significant proportion of clinical variants that are novel or uncertain are not shared, limiting the evidence base for new gene-disease relationships. Registration of paired clinical genetic test results with phenotype has the potential to advance knowledge of the relationships between genes and neurodevelopmental disorders.
Assuntos
Bases de Dados Genéticas , Variação Genética , Humanos , Variação Genética/genética , Testes Genéticos/métodos , Fenótipo , EncéfaloRESUMO
Circular extrachromosomal DNA (ecDNA) in patient tumors is an important driver of oncogenic gene expression, evolution of drug resistance and poor patient outcomes. Applying computational methods for the detection and reconstruction of ecDNA across a retrospective cohort of 481 medulloblastoma tumors from 465 patients, we identify circular ecDNA in 82 patients (18%). Patients with ecDNA-positive medulloblastoma were more than twice as likely to relapse and three times as likely to die within 5 years of diagnosis. A subset of tumors harbored multiple ecDNA lineages, each containing distinct amplified oncogenes. Multimodal sequencing, imaging and CRISPR inhibition experiments in medulloblastoma models reveal intratumoral heterogeneity of ecDNA copy number per cell and frequent putative 'enhancer rewiring' events on ecDNA. This study reveals the frequency and diversity of ecDNA in medulloblastoma, stratified into molecular subgroups, and suggests copy number heterogeneity and enhancer rewiring as oncogenic features of ecDNA.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Neoplasias , Humanos , DNA Circular , Meduloblastoma/genética , Estudos Retrospectivos , Neoplasias/genética , Oncogenes , Neoplasias Cerebelares/genéticaRESUMO
Recent insights into the frequency of occurrence and the genetic and mechanistic basis of nervous system disease have demonstrated that neurologic disorders occur as a spectrum across all ages. To meet future needs of patients with neurologic disease of all ages and prepare for increasing implementaton of precision therapies, greater integration of child and adult neurology residency training is needed. ANN NEUROL 2023;94:1005-1007.
Assuntos
Internato e Residência , Doenças do Sistema Nervoso , Neurologia , Adulto , Criança , Humanos , Neurologia/educação , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/terapiaRESUMO
BACKGROUND: Computational phenotypes are most often combinations of patient billing codes that are highly predictive of disease using electronic health records (EHR). In the case of rare diseases that can only be diagnosed by genetic testing, computational phenotypes identify patient cohorts for genetic testing and possible diagnosis. This article details the validation of a computational phenotype for PTEN hamartoma tumor syndrome (PHTS) against the EHR of patients at three collaborating clinical research centers: Boston Children's Hospital, Children's National Hospital, and the University of Washington. METHODS: A combination of billing codes from the International Classification of Diseases versions 9 and 10 (ICD-9 and ICD-10) for diagnostic criteria postulated by a research team at Cleveland Clinic was used to identify patient cohorts for genetic testing from the clinical data warehouses at the three research centers. Subsequently, the EHR-including billing codes, clinical notes, and genetic reports-of these patients were reviewed by clinical experts to identify patients with PHTS. RESULTS: The PTEN genetic testing yield of the computational phenotype, the number of patients who needed to be genetically tested for incidence of pathogenic PTEN gene variants, ranged from 82 to 94% at the three centers. CONCLUSIONS: Computational phenotypes have the potential to enable the timely and accurate diagnosis of rare genetic diseases such as PHTS by identifying patient cohorts for genetic sequencing and testing.
Assuntos
Testes Genéticos , Síndrome do Hamartoma Múltiplo , Registros Eletrônicos de Saúde , Síndrome do Hamartoma Múltiplo/diagnóstico , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/patologia , Humanos , PTEN Fosfo-Hidrolase/genética , FenótipoRESUMO
Minimal residual disease (MRD) assessment has revolutionized the clinical management of pediatric leukemias but has remained challenging to implement in pediatric brain tumors. In this issue of Cancer Cell, Liu et al. describe an approach to measuring MRD in pediatric medulloblastoma through the use of cell-free DNA in cerebrospinal fluid, with important prognostic implications.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Neoplasias Cerebelares/genética , Criança , Humanos , Meduloblastoma/genética , Neoplasia Residual , PrognósticoRESUMO
PURPOSE: Children with average-risk medulloblastoma (MB) experience survival rates of ≥ 80% at the expense of adverse consequences of treatment. Efforts to mitigate these effects include deintensification of craniospinal irradiation (CSI) dose and volume. METHODS: ACNS0331 (ClinicalTrials.gov identifier: NCT00085735) randomly assigned patients age 3-21 years with average-risk MB to receive posterior fossa radiation therapy (PFRT) or involved field radiation therapy (IFRT) following CSI. Young children (3-7 years) were also randomly assigned to receive standard-dose CSI (SDCSI; 23.4 Gy) or low-dose CSI (LDCSI; 18 Gy). Post hoc molecular classification and mutational analysis contextualized outcomes according to known biologic subgroups (Wingless, Sonic Hedgehog, group 3, and group 4) and genetic biomarkers. Neurocognitive changes and ototoxicity were monitored over time. RESULTS: Five hundred forty-nine patients were enrolled on study, of which 464 were eligible and evaluable to compare PFRT versus IFRT and 226 for SDCSI versus LDCSI. The five-year event-free survival (EFS) was 82.5% (95% CI, 77.2 to 87.8) and 80.5% (95% CI, 75.2 to 85.8) for the IFRT and PFRT regimens, respectively, and 71.4% (95% CI, 62.8 to 80) and 82.9% (95% CI, 75.6 to 90.2) for the LDCSI and SDCSI regimens, respectively. IFRT was not inferior to PFRT (hazard ratio, 0.97; 94% upper CI, 1.32). LDCSI was inferior to SDCSI (hazard ratio, 1.67%; 80% upper CI, 2.10). Improved EFS was observed in patients with Sonic Hedgehog MB who were randomly assigned to the IFRT arm (P = .018). Patients with group 4 MB receiving LDCSI exhibited inferior EFS (P = .047). Children receiving SDCSI exhibited greater late declines in IQ (estimate = 5.87; P = .021). CONCLUSION: Reducing the radiation boost volume in average-risk MB is safe and does not compromise survival. Reducing CSI dose in young children with average-risk MB results in inferior outcomes, possibly in a subgroup-dependent manner, but is associated with better neurocognitive outcome. Molecularly informed patient selection warrants further exploration for children with MB to be considered for late-effect sparing approaches.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Meduloblastoma/tratamento farmacológico , Meduloblastoma/radioterapia , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Adulto JovemRESUMO
Medulloblastoma is the most common malignant pediatric brain tumor. Tumors having high levels of c-MYC have the worst clinical prognosis, with only a minority of patients surviving. To address this unmet clinical need, we generated a human neural stem cell model of medulloblastoma that recapitulated the most aggressive subtype phenotypically and by mRNA expression profiling. An in silico analysis of these cells identified mTOR inhibitors as potential therapeutic agents. We hypothesized that the orally bioavailable TORC1/2 kinase inhibitor TAK228 would have activity against MYC-driven medulloblastoma. TAK228 inhibited mTORC1/2, decreased cell growth and caused apoptosis in high-MYC medulloblastoma cell lines. Comprehensive metabolic profiling of medulloblastoma orthotopic xenografts showed upregulation of glutathione compared to matched normal brain. TAK228 suppressed glutathione production. Because glutathione is required to detoxify platinum-containing chemotherapy, we hypothesized that TAK228 would cooperate with carboplatin in medulloblastoma. TAK228 synergized with carboplatin to inhibit cell growth and induce apoptosis and extended survival in orthotopic xenografts of high-MYC medulloblastoma. Brain-penetrant TORC1/2 inhibitors and carboplatin may be an effective combination therapy for high-risk medulloblastoma.
Assuntos
Antineoplásicos/uso terapêutico , Carboplatina/uso terapêutico , Proliferação de Células/fisiologia , Neoplasias Cerebelares/patologia , Glutationa/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Meduloblastoma/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/fisiologia , Animais , Antineoplásicos/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/enzimologia , Neoplasias Cerebelares/metabolismo , Feminino , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/enzimologia , Meduloblastoma/metabolismo , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In the very young child (less than eight years of age), transient loss of consciousness represents a diagnostic and management dilemma for clinicians. While most commonly benign, syncope may be due to cardiac dysfunction which can be life-threatening. It can be secondary to an underlying ion channelopathy, cardiac inflammation, cardiac ischemia, congenital heart disease, cardiomyopathy, or pulmonary hypertension. Patients with genetic disorders require careful evaluation for a cardiac cause of syncope. Among the noncardiac causes, vasovagal syncope is the most common etiology. Breath-holding spells are commonly seen in this age group. Other causes of transient loss of consciousness include seizures, neurovascular pathology, head trauma, psychogenic pseudosyncope, and factitious disorder imposed on another and other forms of child abuse. A detailed social, present, past medical, and family medical history is important when evaluating loss of consciousness in the very young. Concerning characteristics of syncope include lack of prodromal symptoms, no preceding postural changes or occurring in a supine position, after exertion or a loud noise. A family history of sudden unexplained death, ion channelopathy, cardiomyopathy, or congenital deafness merits further evaluation. Due to inherent challenges in diagnosis at this age, often there is a lower threshold for referral to a specialist.
Assuntos
Síncope/diagnóstico , Síncope/etiologia , Arritmias Cardíacas/complicações , Cardiomiopatias/complicações , Criança , Pré-Escolar , Diagnóstico Diferencial , Cardiopatias Congênitas/complicações , Humanos , Hipertensão Pulmonar/complicações , Masculino , Convulsões/complicações , Síncope Vasovagal/complicações , Inconsciência/diagnóstico , Inconsciência/etiologiaAssuntos
Anticonvulsivantes/uso terapêutico , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Espasmos Infantis/diagnóstico , Espasmos Infantis/tratamento farmacológico , Padrão de Cuidado , Hormônio Adrenocorticotrópico/uso terapêutico , Betacoronavirus , COVID-19 , Atenção à Saúde , Gerenciamento Clínico , Eletroencefalografia , Recursos em Saúde , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Neurologia , Prednisolona/uso terapêutico , SARS-CoV-2 , Telemedicina , Esclerose Tuberosa/diagnóstico , Comunicação por Videoconferência , Vigabatrina/uso terapêuticoRESUMO
INTRODUCTION: Brain tumors make up over a quarter of pediatric malignancies. Depending on the age of presentation and treatment, pediatric brain tumor survivors experience varying degrees of treatment induced morbidity and sequelae. Epigenetic mechanisms play a critical role in silencing of tumor suppressor genes and activation of driver genes involved in oncogenesis in different types of brain tumors. Epigenetic modifications in pediatric brain tumor patients may influence long-term survival and may refine the molecular response to treatment induced morbidity and sequelae. However, there is a dearth of studies on how epigenetics of pediatric brain tumors is connected with neurocognition and other treatment related sequelae in survivors. METHODS/RESULTS: In this review we explore epigenetic factors that may contribute to the survivorship and treatment of pediatric brain tumor patients. We focus on glioblastoma, medulloblastoma, and the neurocutaneous syndrome neurofibromatosis type-1 to highlight epigenetic biomarkers that can potentially serve not only as prognostic indicators of overall patient survival, but hopefully as indicators to the response to treatment neurocognitively and otherwise. CONCLUSIONS: Future studies will hopefully soon bridge the gap in our knowledge on how epigenetic modifications are linked to treatment related sequelae in pediatric brain tumor patients.
Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Neoplasias Encefálicas/genética , Neoplasias Cerebelares/genética , Criança , Epigênese Genética , Humanos , Meduloblastoma/genética , SobrevivênciaRESUMO
Pineoblastomas (PBs) are rare, aggressive pediatric brain tumors of the pineal gland with modest overall survival despite intensive therapy. We sought to define the clinical and molecular spectra of PB to inform new treatment approaches for this orphan cancer. Tumor, blood, and clinical data from 91 patients with PB or supratentorial primitive neuroectodermal tumor (sPNETs/CNS-PNETs), and 2 pineal parenchymal tumors of intermediate differentiation (PPTIDs) were collected from 29 centres in the Rare Brain Tumor Consortium. We used global DNA methylation profiling to define a core group of PB from 72/93 cases, which were delineated into five molecular sub-groups. Copy number, whole exome and targeted sequencing, and miRNA expression analyses were used to evaluate the clinico-pathologic significance of each sub-group. Tumors designated as group 1 and 2 almost exclusively exhibited deleterious homozygous loss-of-function alterations in miRNA biogenesis genes (DICER1, DROSHA, and DGCR8) in 62 and 100% of group 1 and 2 tumors, respectively. Recurrent alterations of the oncogenic MYC-miR-17/92-RB1 pathway were observed in the RB and MYC sub-group, respectively, characterized by RB1 loss with gain of miR-17/92, and recurrent gain or amplification of MYC. PB sub-groups exhibited distinct clinical features: group 1-3 arose in older children (median ages 5.2-14.0 years) and had intermediate to excellent survival (5-year OS of 68.0-100%), while Group RB and MYC PB patients were much younger (median age 1.3-1.4 years) with dismal survival (5-year OS 37.5% and 28.6%, respectively). We identified age < 3 years at diagnosis, metastatic disease, omission of upfront radiation, and chr 16q loss as significant negative prognostic factors across all PBs. Our findings demonstrate that PB exhibits substantial molecular heterogeneity with sub-group-associated clinical phenotypes and survival. In addition to revealing novel biology and therapeutics, molecular sub-grouping of PB can be exploited to reduce treatment intensity for patients with favorable biology tumors.
Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glândula Pineal , Pinealoma/genética , Pinealoma/patologia , Adolescente , Adulto , Fatores Etários , Neoplasias Encefálicas/mortalidade , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , MicroRNAs/metabolismo , Mutação/genética , Pinealoma/mortalidade , Sistema de Registros , Taxa de Sobrevida , Adulto JovemRESUMO
Progenitor heterogeneity and identities underlying tumor initiation and relapse in medulloblastomas remain elusive. Utilizing single-cell transcriptomic analysis, we demonstrated a developmental hierarchy of progenitor pools in Sonic Hedgehog (SHH) medulloblastomas, and identified OLIG2-expressing glial progenitors as transit-amplifying cells at the tumorigenic onset. Although OLIG2+ progenitors become quiescent stem-like cells in full-blown tumors, they are highly enriched in therapy-resistant and recurrent medulloblastomas. Depletion of mitotic Olig2+ progenitors or Olig2 ablation impeded tumor initiation. Genomic profiling revealed that OLIG2 modulates chromatin landscapes and activates oncogenic networks including HIPPO-YAP/TAZ and AURORA-A/MYCN pathways. Co-targeting these oncogenic pathways induced tumor growth arrest. Together, our results indicate that glial lineage-associated OLIG2+ progenitors are tumor-initiating cells during medulloblastoma tumorigenesis and relapse, suggesting OLIG2-driven oncogenic networks as potential therapeutic targets.
Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/genética , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/patologia , Neuroglia/patologia , Animais , Neoplasias Encefálicas , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/patologia , Pré-Escolar , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Camundongos Transgênicos , Recidiva Local de Neoplasia/patologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Prognóstico , RNA-Seq , Transdução de Sinais/genética , Análise de Célula Única , Análise de Sobrevida , TranscriptomaRESUMO
Medulloblastoma is a malignant childhood cerebellar tumour type that comprises distinct molecular subgroups. Whereas genomic characteristics of these subgroups are well defined, the extent to which cellular diversity underlies their divergent biology and clinical behaviour remains largely unexplored. Here we used single-cell transcriptomics to investigate intra- and intertumoral heterogeneity in 25 medulloblastomas spanning all molecular subgroups. WNT, SHH and Group 3 tumours comprised subgroup-specific undifferentiated and differentiated neuronal-like malignant populations, whereas Group 4 tumours consisted exclusively of differentiated neuronal-like neoplastic cells. SHH tumours closely resembled granule neurons of varying differentiation states that correlated with patient age. Group 3 and Group 4 tumours exhibited a developmental trajectory from primitive progenitor-like to more mature neuronal-like cells, the relative proportions of which distinguished these subgroups. Cross-species transcriptomics defined distinct glutamatergic populations as putative cells-of-origin for SHH and Group 4 subtypes. Collectively, these data provide insights into the cellular and developmental states underlying subtype-specific medulloblastoma biology.
Assuntos
Genômica , Meduloblastoma/genética , Meduloblastoma/patologia , Análise de Célula Única , Transcriptoma , Adolescente , Adulto , Animais , Linhagem da Célula , Cerebelo/metabolismo , Cerebelo/patologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Lactente , Meduloblastoma/classificação , Camundongos , Neurônios/metabolismo , Neurônios/patologiaRESUMO
Progress in addressing the origins of intellectual and developmental disabilities accelerated with the establishment 50 years ago of the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health and associated Intellectual and Developmental Disabilities Research Centers. Investigators at these Centers have made seminal contributions to understanding human brain and behavioral development and defining mechanisms and treatments of disorders of the developing brain. ANN NEUROL 2019;86:332-343.
Assuntos
Academias e Institutos/história , Deficiências do Desenvolvimento , Deficiência Intelectual , National Institute of Child Health and Human Development (U.S.)/história , História do Século XX , História do Século XXI , Humanos , Estados UnidosRESUMO
Medulloblastoma (MB) comprises a biologically heterogeneous group of embryonal tumours of the cerebellum. Four subgroups of MB have been described (WNT, sonic hedgehog (SHH), Group 3 and Group 4), each of which is associated with different genetic alterations, age at onset and prognosis. These subgroups have broadly been incorporated into the WHO classification of central nervous system tumours but still need to be accounted for to appropriately tailor disease risk to therapy intensity and to target therapy to disease biology. In this Primer, the epidemiology (including MB predisposition), molecular pathogenesis and integrative diagnosis taking histomorphology, molecular genetics and imaging into account are reviewed. In addition, management strategies, which encompass surgical resection of the tumour, cranio-spinal irradiation and chemotherapy, are discussed, together with the possibility of focusing more on disease biology and robust molecularly driven patient stratification in future clinical trials.
Assuntos
Meduloblastoma/diagnóstico , Meduloblastoma/terapia , Quimioterapia Adjuvante/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Programas de Rastreamento/métodos , Meduloblastoma/epidemiologia , Prognóstico , Qualidade de Vida/psicologia , Fatores de RiscoRESUMO
There is a pressing need to identify therapeutic targets in tumors with low mutation rates such as the malignant pediatric brain tumor medulloblastoma. To address this challenge, we quantitatively profiled global proteomes and phospho-proteomes of 45 medulloblastoma samples. Integrated analyses revealed that tumors with similar RNA expression vary extensively at the post-transcriptional and post-translational levels. We identified distinct pathways associated with two subsets of SHH tumors, and found post-translational modifications of MYC that are associated with poor outcomes in group 3 tumors. We found kinases associated with subtypes and showed that inhibiting PRKDC sensitizes MYC-driven cells to radiation. Our study shows that proteomics enables a more comprehensive, functional readout, providing a foundation for future therapeutic strategies.