Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12288, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516733

RESUMO

Globe artichoke capitula are susceptible to browning due to oxidation of phenols caused by the activity of polyphenol oxidases (PPOs), this reduces their suitability for fresh or processed uses. A genome-wide analysis of the globe artichoke PPO gene family was performed. Bioinformatics analyses identified eleven PPOs and their genomic and amino acidic features were annotated. Cis-acting element analysis identified a gene regulatory and functional profile associated to plant growth and development as well as stress response. For some PPOs, phylogenetic analyses revealed a structural and functional conservation with different Asteraceae PPOs, while the allelic variants of the eleven PPOs investigated across four globe artichoke varietal types identified several SNP/Indel variants, some of which having impact on gene translation. By RTqPCR were assessed the expression patterns of PPOs in plant tissues and in vitro calli characterized by different morphologies. Heterogeneous PPO expression profiles were observed and three of them (PPO6, 7 and 11) showed a significant increase of transcripts in capitula tissues after cutting. Analogously, the same three PPOs were significantly up-regulated in calli showing a brown phenotype due to oxidation of phenols. Our results lay the foundations for a future application of gene editing aimed at disabling the three PPOs putatively involved in capitula browning.


Assuntos
Calosidades , Cynara scolymus , Scolymus , Cynara scolymus/genética , Filogenia , Catecol Oxidase/genética , Fenóis , Polifenóis
2.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498869

RESUMO

Phytophthora infestans, the causal agent of late blight (LB) in tomato (Solanum lycopersicum L.), is a devastating disease and a serious concern for plant productivity. The presence of susceptibility (S) genes in plants facilitates pathogen proliferation; thus, disabling these genes may help provide a broad-spectrum and durable type of tolerance/resistance. Previous studies on Arabidopsis and tomato have highlighted that knock-out mutants of the PMR4 susceptibility gene are tolerant to powdery mildew. Moreover, PMR4 knock-down in potato has been shown to confer tolerance to LB. To verify the same effect in tomato in the present study, a CRISPR-Cas9 vector containing four single guide RNAs (sgRNAs: sgRNA1, sgRNA6, sgRNA7, and sgRNA8), targeting as many SlPMR4 regions, was introduced via Agrobacterium-tumefaciens-mediated transformation into two widely grown Italian tomato cultivars: 'San Marzano' (SM) and 'Oxheart' (OX). Thirty-five plants (twenty-six SM and nine OX) were selected and screened to identify the CRISPR/Cas9-induced mutations. The different sgRNAs caused mutation frequencies ranging from 22.1 to 100% and alternatively precise insertions (sgRNA6) or deletions (sgRNA7, sgRNA1, and sgRNA8). Notably, sgRNA7 induced in seven SM genotypes a -7 bp deletion in the homozygous status, whereas sgRNA8 led to the production of fifteen SM genotypes with a biallelic mutation (-7 bp and -2 bp). Selected edited lines were inoculated with P. infestans, and four of them, fully knocked out at the PMR4 locus, showed reduced disease symptoms (reduction in susceptibility from 55 to 80%) compared to control plants. The four SM lines were sequenced using Illumina whole-genome sequencing for deeper characterization without exhibiting any evidence of mutations in the candidate off-target regions. Our results showed, for the first time, a reduced susceptibility to Phytophtora infestans in pmr4 tomato mutants confirming the role of KO PMR4 in providing broad-spectrum protection against pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum lycopersicum/genética , Sistemas CRISPR-Cas/genética , Doenças das Plantas/genética , Phytophthora infestans/genética , Solanum tuberosum/genética , Arabidopsis/genética , Glucosiltransferases/genética , Proteínas de Arabidopsis/genética
3.
Hortic Res ; 8(1): 204, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465763

RESUMO

Fire blight disease, caused by the bacterium Erwinia amylovora (E. amylovora), is responsible for substantial losses in cultivated apples worldwide. An important mechanism of plant immunity is based on the recognition of conserved microbial molecules, named pathogen-associated or microbe-associated molecular patterns (PAMPs or MAMPs), through pattern recognition receptors (PRRs), leading to pattern-triggered immunity (PTI). The interspecies transfer of PRRs represents a promising strategy to engineer broad-spectrum and durable disease resistance in crops. EFR, the Arabidopsis thaliana PRR for the PAMP elf18 derived from the elongation factor thermal unstable (EF-Tu) proved to be effective in improving bacterial resistance when expressed into Solanaceae and other plant species. In this study, we tested whether EFR can affect the interaction of apple with E. amylovora by its ectopic expression in the susceptible apple rootstock M.26. Stable EFR expression led to the activation of PAMP-triggered immune response in apple leaves upon treatment with supernatant of E. amylovora, as measured by the production of reactive oxygen species and the induction of known defense genes. The amount of tissue necrosis associated with E. amylovora infection was significantly reduced in the EFR transgenic rootstock compared to the wild-type. Our results show that the expression of EFR in apple rootstock may be a valuable biotechnology strategy to improve the resistance of apple to fire blight.

5.
Sci Rep ; 10(1): 20155, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214661

RESUMO

Genome editing via CRISPR/Cas9 is a powerful technology, which has been widely applied to improve traits in cereals, vegetables and even fruit trees. For the delivery of CRISPR/Cas9 components into dicotyledonous plants, Agrobacterium tumefaciens mediated gene transfer is still the prevalent method, although editing is often accompanied by the integration of the bacterial T-DNA into the host genome. We assessed two approaches in order to achieve T-DNA excision from the plant genome, minimizing the extent of foreign DNA left behind. The first is based on the Flp/FRT system and the second on Cas9 and synthetic cleavage target sites (CTS) close to T-DNA borders, which are recognized by the sgRNA. Several grapevine and apple lines, transformed with a panel of CRISPR/SpCas9 binary vectors, were regenerated and characterized for T-DNA copy number and for the rate of targeted editing. As detected by an optimized NGS-based sequencing method, trimming at T-DNA borders occurred in 100% of the lines, impairing in most cases the excision. Another observation was the leakage activity of Cas9 which produced pierced and therefore non-functional CTS. Deletions of genomic DNA and presence of filler DNA were also noticed at the junctions between T-DNA and genomic DNA. This study proved that many factors must be considered for designing efficient binary vectors capable of minimizing the presence of exogenous DNA in CRISPRed fruit trees.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos/genética , Malus/genética , Plantas Geneticamente Modificadas/genética , Vitis/genética , Agrobacterium tumefaciens/genética , Sistemas CRISPR-Cas , DNA Bacteriano , Edição de Genes/métodos , Genes de Plantas , Genoma de Planta
6.
Sci Rep ; 10(1): 16317, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004843

RESUMO

Development of apple (Malus domestica) cultivars resistant to fire blight, a devastating bacterial disease caused by Erwinia amylovora, is a priority for apple breeding programs. Towards this goal, the inactivation of members of the HIPM and DIPM gene families with a role in fire blight susceptibility (S genes) can help achieve sustainable tolerance. We have investigated the genomic diversity of HIPM and DIPM genes in Malus germplasm collections and used a candidate gene-based association mapping approach to identify SNPs (single nucleotide polymorphisms) with significant associations to fire blight susceptibility. A total of 87 unique SNP variants were identified in HIPM and DIPM genes across 93 Malus accessions. Thirty SNPs showed significant associations (p < 0.05) with fire blight susceptibility traits, while two of these SNPs showed highly significant (p < 0.001) associations across two different years. This research has provided knowledge about genetic diversity in fire blight S genes in diverse apple accessions and identified candidate HIPM and DIPM alleles that could be used to develop apple cultivars with decreased fire blight susceptibility via marker-assisted breeding or biotechnological approaches.


Assuntos
Mapeamento Cromossômico , Erwinia amylovora , Predisposição Genética para Doença/genética , Malus/genética , Doenças das Plantas/microbiologia , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Genes de Plantas/genética , Variação Genética/genética , Técnicas de Genotipagem , Malus/imunologia , Malus/microbiologia , Melhoramento Vegetal , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único/genética , Banco de Sementes , Análise de Sequência de DNA
7.
Hortic Res ; 7: 99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637127

RESUMO

Malus x domestica microRNA MdmiR285N is a potential key regulator of plant immunity, as it has been predicted to target 35 RNA transcripts coding for different disease resistance proteins involved in plant defense to pathogens. In this study, the promoter region of MdmiR285N was isolated from the apple genome and analyzed in silico to detect potential regulatory regions controlling its transcription. A complex network of putative regulatory elements involved in plant growth and development, and in response to different hormones and stress conditions, was identified. Activity of the ß-Glucoronidase (GUS) reporter gene driven by the promoter of MdmiR285N was examined in transgenic apple, demonstrating that MdmiR285N was expressed during the vegetative growth phase. Similarly, in transgenic Arabidopsis thaliana, spatial and temporal patterns of GUS expression revealed that MdmiR285N was differentially regulated during seed germination, vegetative phase change, and reproductive development. To elucidate the role of MdmiR285N in plant immunity, MdmiR285N expression in wild-type apple plants and GUS activity in transgenic apple and Arabidopsis thaliana plants were monitored in response to Erwinia amylovora and Pseudomonas syringae pv. Tomato DC3000. A significant decrease of MdmiR285N levels and GUS expression was observed during host-pathogen infections. Overall, these data suggest that MdmiR285N is involved in the biotic stress response, plant growth, and reproductive development.

8.
Plant Biotechnol J ; 18(3): 845-858, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495052

RESUMO

The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença/genética , Erwinia amylovora/patogenicidade , Edição de Genes , Malus/genética , Doenças das Plantas/genética , DNA Bacteriano , Técnicas de Silenciamento de Genes , Malus/microbiologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia
9.
J Exp Bot ; 68(5): 997-1012, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28199662

RESUMO

In plants, the polyamines putrescine, spermidine, spermine (Spm), and thermospermine (Therm-Spm) participate in several physiological processes. In particular, Therm-Spm is involved in the control of xylem differentiation, having an auxin antagonizing effect. Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine catabolism. In Arabidopsis, five PAOs are present, among which AtPAO5 catalyzes the back-conversion of Spm, Therm-Spm, and N1-acetyl-Spm to spermidine. In the present study, it is shown that two loss-of-function atpao5 mutants and a 35S::AtPAO5 Arabidopsis transgenic line present phenotypical differences from the wild-type plants with regard to stem and root elongation, differences that are accompanied by changes in polyamine levels and the number of xylem vessels. It is additionally shown that cytokinin treatment, which up-regulates AtPAO5 expression in roots, differentially affects protoxylem differentiation in 35S::AtPAO5, atpao5, and wild-type roots. Together with these findings, Therm-Spm biosynthetic genes, as well as auxin-, xylem-, and cytokinin-related genes (such as ACL5, SAMDC4, PIN1, PIN6, VND6, VND7, ATHB8, PHB, CNA, PXY, XTH3, XCP1, and AHP6) are shown to be differentially expressed in the various genotypes. These data suggest that AtPAO5, being involved in the control of Therm-Spm homeostasis, participates in the tightly controlled interplay between auxin and cytokinins that is necessary for proper xylem differentiation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Diferenciação Celular , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/genética , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/metabolismo , Xilema/citologia , Xilema/enzimologia , Xilema/genética
10.
Front Plant Sci ; 7: 1793, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018369

RESUMO

During grape ripening, numerous transcriptional and metabolic changes are required in order to obtain colored, sweet, and flavored berries. There is evidence that ethylene, together with other signals, plays an important role in triggering the onset of ripening. Here, we report the functional characterization of a berry-specific Ethylene Responsive Factor (ERF), VviERF045, which is induced just before véraison and peaks at ripening. Phylogenetic analysis revealed it is close to the SHINE clade of ERFs, factors involved in the regulation of wax biosynthesis and cuticle morphology. Transgenic grapevines lines overexpressing VviERF045 were obtained, in vitro propagated, phenotypically characterized, and analyzed for the content of specific classes of metabolites. The effect of VviERF045 was correlated with the level of transgene expression, with high-expressing lines showing stunted growth, discolored and smaller leaves, and a lower level of chlorophylls and carotenoids. One line with intermediate expression, L15, was characterized at the transcriptomic level and showed 573 differentially expressed genes compared to wild type plants. Microscopy and gene expression analyses point toward a major role of VviERF045 in epidermis patterning by acting on waxes and cuticle. They also indicate that VviERF045 affects phenolic secondary metabolism and induces a reaction resembling a plant immune response with modulation of receptor like-kinases and pathogen related genes. These results suggest also a possible role of this transcription factor in berry ripening, likely related to changes in epidermis and cuticle of the berry, cell expansion, a decrease in photosynthetic capacity, and the activation of several defense related genes as well as from the phenylpropanoid metabolism. All these processes occur in the berry during ripening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA