Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 6(9): 2751-62, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27066251

RESUMO

For natural populations to adapt to anthropogenic threats, heritable variation must persist in tolerance traits. Silver nanoparticles, the most widely used engineered nanoparticles, are expected to increase in concentrations in freshwaters. Little is known about how these particles affect wild populations, and whether genetic variation persists in tolerance to permit rapid evolutionary responses. We sampled wild adult whitefish and crossed them in vitro full factorially. In total, 2896 singly raised embryos of 48 families were exposed to two concentrations (0.5 µg/L; 100 µg/L) of differently sized silver nanoparticles or ions (silver nitrate). These doses were not lethal; yet higher concentrations prompted embryos to hatch earlier and at a smaller size. The induced hatching did not vary with nanoparticle size and was stronger in the silver nitrate group. Additive genetic variation for hatching time was significant across all treatments, with no apparent environmental dependencies. No genetic variation was found for hatching plasticity. We found some treatment-dependent heritable variation for larval length and yolk volume, and one instance of additive genetic variation for the reaction norm on length at hatching. Our assessment suggests that the effects of silver exposure on additive genetic variation vary according to trait and silver source. While the long-term fitness consequences of low-level silver exposure on whitefish embryos must be further investigated to determine whether it is, in fact, detrimental, our results suggest that the evolutionary potential for adaptation to these types of pollutants may be low.

2.
Conserv Biol ; 27(1): 229-34, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22891785

RESUMO

In some fishes, water chemistry or temperature affects sex determination or creates sex-specific selection pressures. The resulting population sex ratios are hard to predict from laboratory studies if the environmental triggers interact with other factors, whereas in field studies, singular observations of unusual sex ratios may be particularly prone to selective reporting. Long-term monitoring largely avoids these problems. We studied a population of grayling (Thymallus thymallus) in Lake Thun, Switzerland, that has been monitored since 1948. Samples of spawning fish have been caught about 3 times/week around spawning season, and water temperature at the spawning site has been continuously recorded since 1970. We used scale samples collected in different years to determine the average age of spawners (for life-stage specific analyses) and to identify the cohort born in 2003 (an extraordinarily warm year). Recent tissue samples were genotyped on microsatellite markers to test for genetic bottlenecks in the past and to estimate the genetically effective population size (N(e)). Operational sex ratios changed from approximately 65% males before 1993 to approximately 85% males from 1993 to 2011. Sex ratios correlated with the water temperatures the fish experienced in their first year of life. Sex ratios were best explained by the average temperature juvenile fish experienced during their first summer. Grayling abundance is declining, but we found no evidence of a strong genetic bottleneck that would explain the apparent lack of evolutionary response to the unequal sex ratio. Results of other studies show no evidence of endocrine disruptors in the study area. Our findings suggest temperature affects population sex ratio and thereby contributes to population decline.


Assuntos
Salmonidae/fisiologia , Razão de Masculinidade , Temperatura , Animais , Conservação dos Recursos Naturais , Feminino , Genótipo , Masculino , Dinâmica Populacional , Salmonidae/genética , Processos de Determinação Sexual , Suíça
3.
BMC Evol Biol ; 12: 247, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23249365

RESUMO

BACKGROUND: Local adaptation can drive the divergence of populations but identification of the traits under selection remains a major challenge in evolutionary biology. Reciprocal transplant experiments are ideal tests of local adaptation, yet rarely used for higher vertebrates because of the mobility and potential invasiveness of non-native organisms. Here, we reciprocally transplanted 2500 brown trout (Salmo trutta) embryos from five populations to investigate local adaptation in early life history traits. Embryos were bred in a full-factorial design and raised in natural riverbeds until emergence. Customized egg capsules were used to simulate the natural redd environment and allowed tracking the fate of every individual until retrieval. We predicted that 1) within sites, native populations would outperform non-natives, and 2) across sites, populations would show higher performance at 'home' compared to 'away' sites. RESULTS: There was no evidence for local adaptation but we found large differences in survival and hatching rates between sites, indicative of considerable variation in habitat quality. Survival was generally high across all populations (55% ± 3%), but ranged from 4% to 89% between sites. Average hatching rate was 25% ± 3% across populations ranging from 0% to 62% between sites. CONCLUSION: This study provides rare empirical data on variation in early life history traits in a population network of a salmonid, and large-scale breeding and transplantation experiments like ours provide powerful tests for local adaptation. Despite the recently reported genetic and morphological differences between the populations in our study area, local adaptation at the embryo level is small, non-existent, or confined to ecological conditions that our experiment could not capture.


Assuntos
Adaptação Fisiológica/genética , Embrião não Mamífero/metabolismo , Seleção Genética , Truta/genética , Análise de Variância , Animais , Cruzamento , Ecossistema , Embrião não Mamífero/embriologia , Feminino , Aptidão Genética , Variação Genética , Geografia , Masculino , Rios , Suíça , Truta/classificação , Truta/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA