Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 29(6): 3105-3120, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35180081

RESUMO

To reduce the number of pending cases and conflicting rulings in the Brazilian Judiciary, the National Congress amended the Constitution, allowing the Brazilian Supreme Court (STF) to create binding precedents (BPs), i.e., a set of understandings that both Executive and lower Judiciary branches must follow. The STF's justices frequently cite the 58 existing BPs in their decisions, and it is of primary relevance that judicial experts could identify and analyze such citations. To assist in this problem, we propose LegalVis, a web-based visual analytics system designed to support the analysis of legal documents that cite or could potentially cite a BP. We model the problem of identifying potential citations (i.e., non-explicit) as a classification problem. However, a simple score is not enough to explain the results; that is why we use an interpretability machine learning method to explain the reason behind each identified citation. For a compelling visual exploration of documents and BPs, LegalVis comprises three interactive visual components: the first presents an overview of the data showing temporal patterns, the second allows filtering and grouping relevant documents by topic, and the last one shows a document's text aiming to interpret the model's output by pointing out which paragraphs are likely to mention the BP, even if not explicitly specified. We evaluated our identification model and obtained an accuracy of 96%; we also made a quantitative and qualitative analysis of the results. The usefulness and effectiveness of LegalVis were evaluated through two usage scenarios and feedback from six domain experts.

2.
IEEE Trans Vis Comput Graph ; 29(10): 4031-4046, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588413

RESUMO

Physicians work at a very tight schedule and need decision-making support tools to help on improving and doing their work in a timely and dependable manner. Examining piles of sheets with test results and using systems with little visualization support to provide diagnostics is daunting, but that is still the usual way for the physicians' daily procedure, especially in developing countries. Electronic Health Records systems have been designed to keep the patients' history and reduce the time spent analyzing the patient's data. However, better tools to support decision-making are still needed. In this article, we propose ClinicalPath, a visualization tool for users to track a patient's clinical path through a series of tests and data, which can aid in treatments and diagnoses. Our proposal is focused on patient's data analysis, presenting the test results and clinical history longitudinally. Both the visualization design and the system functionality were developed in close collaboration with experts in the medical domain to ensure a right fit of the technical solutions and the real needs of the professionals. We validated the proposed visualization based on case studies and user assessments through tasks based on the physician's daily activities. Our results show that our proposed system improves the physicians' experience in decision-making tasks, made with more confidence and better usage of the physicians' time, allowing them to take other needed care for the patients.


Assuntos
Registros Eletrônicos de Saúde , Médicos , Humanos , Gráficos por Computador , Software , Tomada de Decisão Clínica
3.
IEEE Trans Vis Comput Graph ; 29(1): 203-213, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36155451

RESUMO

Temporal (or time-evolving) networks are commonly used to model complex systems and the evolution of their components throughout time. Although these networks can be analyzed by different means, visual analytics stands out as an effective way for a pre-analysis before doing quantitative/statistical analyses to identify patterns, anomalies, and other behaviors in the data, thus leading to new insights and better decision-making. However, the large number of nodes, edges, and/or timestamps in many real-world networks may lead to polluted layouts that make the analysis inefficient or even infeasible. In this paper, we propose LargeNetVis, a web-based visual analytics system designed to assist in analyzing small and large temporal networks. It successfully achieves this goal by leveraging three taxonomies focused on network communities to guide the visual exploration process. The system is composed of four interactive visual components: the first (Taxonomy Matrix) presents a summary of the network characteristics, the second (Global View) gives an overview of the network evolution, the third (a node-link diagram) enables community- and node-level structural analysis, and the fourth (a Temporal Activity Map - TAM) shows the community- and node-level activity under a temporal perspective. We demonstrate the usefulness and effectiveness of LargeNetVis through two usage scenarios and a user study with 14 participants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA