Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Ther ; 24(2): 206-216, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26447927

RESUMO

Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease arising from mutations in ß-d-glucuronidase (GUSB), which results in glycosaminoglycan (GAG) accumulation and a variety of clinical manifestations including neurological disease. Herein, MPS VII dogs were injected intravenously (i.v.) and/or intrathecally (i.t.) via the cisterna magna with AAV9 or AAVrh10 vectors carrying the canine GUSB cDNA. Although i.v. injection alone at 3 days of age resulted in normal cerebrospinal fluid (CSF) GUSB activity, brain tissue homogenates had only ~1 to 6% normal GUSB activity and continued to have elevated GAG storage. In contrast, i.t. injection at 3 weeks of age resulted in CSF GUSB activity 44-fold normal while brain tissue homogenates had >100% normal GUSB activity and reduced GAGs compared with untreated dogs. Markers for secondary storage and inflammation were eliminated in i.t.-treated dogs and reduced in i.v.-treated dogs compared with untreated dogs. Given that i.t.-treated dogs expressed higher levels of GUSB in the CNS tissues compared to those treated i.v., we conclude that i.t. injection of AAV9 or AAVrh10 vectors is more effective than i.v. injection alone in the large animal model of MPS VII.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Terapia Genética/métodos , Glucuronidase/genética , Mucopolissacaridose VII/terapia , Animais , Animais Recém-Nascidos , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Cães , Vetores Genéticos/administração & dosagem , Glucuronidase/líquido cefalorraquidiano , Glicosaminoglicanos/metabolismo , Injeções Intravenosas , Injeções Espinhais , Masculino , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/metabolismo
2.
Hum Gene Ther Clin Dev ; 26(1): 27-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25671613

RESUMO

Lysosomal storage disorders (LSDs) are inherited diseases that result from the intracellular accumulation of incompletely degraded macromolecules. The majority of LSDs affect both the peripheral and central nervous systems and are not effectively treated by enzyme replacement therapy, substrate reduction therapy, or bone marrow transplantation. Advances in adeno-associated virus and retroviral vector development over the past decade have resurged gene therapy as a promising therapeutic intervention for these monogenic diseases. Animal models of LSDs provide a necessary intermediate to optimize gene therapy protocols and assess the safety and efficacy of treatment prior to initiating human clinical trials. Numerous LSDs are naturally occurring in large animal models and closely reiterate the lesions, biochemical defect, and clinical phenotype observed in human patients, and whose lifetime is sufficiently long to assess the effect on symptoms that develop later in life. Herein, we review that gene therapy in large animal models (dogs and cats) of LSDs improved many manifestations of disease, and may be used in patients in the near future.


Assuntos
Terapia Genética , Doenças por Armazenamento dos Lisossomos/terapia , Animais , Gatos , Modelos Animais de Doenças , Cães , Humanos , Doenças por Armazenamento dos Lisossomos/genética
3.
Mol Genet Metab ; 114(2): 209-16, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25559179

RESUMO

Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder caused by the deficiency of the enzyme ß-glucuronidase (Gusb(-/-)) and results in glycosaminoglycan (GAG) accumulation. Skeletal abnormalities include stunted long bones and bone degeneration. GAGs have been hypothesized to activate toll-like receptor 4 (Tlr4) signaling and the complement pathway, resulting in upregulation of inflammatory cytokines that suppress growth and cause degeneration of the bone. Gusb(-/-) mice were bred with Tlr4- and complement component 3 (C3)-deficient mice, and the skeletal manifestations of the doubly- and triply-deficient mice were compared to those of purebred Gusb(-/-) mice. Radiographs showed that purebred Gusb(-/-) mice had shorter tibias and femurs, and wider femurs, compared to normal mice. No improvement was seen in Tlr4, C3, or Tlr4/C3-deficient Gusb(-/-) mice. The glenoid cavity and humerus were scored on a scale from 0 (normal) to +3 (severely abnormal) for dysplasia and bone irregularities, and the joint space was measured. No improvement was seen in Tlr4, C3, or Tlr4/C3-deficient Gusb(-/-) mice, and their joint space remained abnormally wide. Gusb(-/-) mice treated neonatally with an intravenous retroviral vector (RV) had thinner femurs, longer legs, and a narrowed joint space compared with untreated purebred Gusb(-/-) mice, but no improvement in glenohumeral degeneration. We conclude that Tlr4- and/or C3-deficiency fail to ameliorate skeletal abnormalities, and other pathways may be involved. RV treatment improves some but not all aspects of bone disease. Radiographs may be an efficient method for future evaluation, as they readily show glenohumeral joint abnormalities.


Assuntos
Doenças Ósseas/terapia , Complemento C3/deficiência , Terapia Genética , Glucuronidase/genética , Mucopolissacaridose VII/terapia , Receptor 4 Toll-Like/deficiência , Animais , Animais Recém-Nascidos , Doenças Ósseas/diagnóstico por imagem , Complemento C3/genética , Modelos Animais de Doenças , Fêmur/diagnóstico por imagem , Vetores Genéticos , Cavidade Glenoide/diagnóstico por imagem , Úmero/diagnóstico por imagem , Camundongos , Mucopolissacaridose VII/diagnóstico por imagem , Mutação , Radiografia , Tíbia/diagnóstico por imagem , Receptor 4 Toll-Like/genética
4.
J Bone Miner Res ; 29(12): 2610-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24898323

RESUMO

Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease characterized by deficient α-L-iduronidase activity, leading to the accumulation of poorly degraded glycosaminoglycans (GAGs). Children with MPS I exhibit high incidence of spine disease, including accelerated disc degeneration and vertebral dysplasia, which in turn lead to spinal cord compression and kyphoscoliosis. In this study we investigated the efficacy of neonatal enzyme replacement therapy (ERT), alone or in combination with oral simvastatin (ERT + SIM) for attenuating cervical spine disease progression in MPS I, using a canine model. Four groups were studied: normal controls; MPS I untreated; MPS I ERT-treated; and MPS I ERT + SIM-treated. Animals were euthanized at age 1 year. Intervertebral disc condition and spinal cord compression were evaluated from magnetic resonance imaging (MRI) images and plain radiographs, vertebral bone condition and odontoid hypoplasia were evaluated using micro-computed tomography (µCT), and epiphyseal cartilage to bone conversion was evaluated histologically. Untreated MPS I animals exhibited more advanced disc degeneration and more severe spinal cord compression than normal animals. Both treatment groups resulted in partial preservation of disc condition and cord compression, with ERT + SIM not significantly better than ERT alone. Untreated MPS I animals had significantly lower vertebral trabecular bone volume and mineral density, whereas ERT treatment resulted in partial preservation of these properties. ERT + SIM treatment demonstrated similar, but not greater, efficacy. Both treatment groups partially normalized endochondral ossification in the vertebral epiphyses (as indicated by absence of persistent growth plate cartilage), and odontoid process size and morphology. These results indicate that ERT begun from a very early age attenuates the severity of cervical spine disease in MPS I, particularly for the vertebral bone and odontoid process, and that additional treatment with simvastatin does not provide a significant additional benefit over ERT alone.


Assuntos
Doenças do Cão , Terapia de Reposição de Enzimas , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Iduronidase/uso terapêutico , Degeneração do Disco Intervertebral , Mucopolissacaridose I , Sinvastatina/farmacologia , Animais , Modelos Animais de Doenças , Doenças do Cão/tratamento farmacológico , Doenças do Cão/metabolismo , Doenças do Cão/patologia , Cães , Feminino , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/veterinária , Masculino , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/metabolismo , Mucopolissacaridose I/patologia , Mucopolissacaridose I/veterinária
5.
Mol Genet Metab ; 110(3): 319-28, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23856419

RESUMO

Mucopolysaccharidosis VII (MPS VII) is due to the deficient activity of ß-glucuronidase (GUSB) and results in the accumulation of glycosaminoglycans (GAGs) in lysosomes and multisystemic disease with cardiovascular manifestations. The goal here was to determine the pathogenesis of mitral valve (MV) disease in MPS VII dogs. Untreated MPS VII dogs had a marked reduction in the histochemical signal for structurally-intact collagen in the MV at 6 months of age, when mitral regurgitation had developed. Electron microscopy demonstrated that collagen fibrils were of normal diameter, but failed to align into large parallel arrays. mRNA analysis demonstrated a modest reduction in the expression of genes that encode collagen or collagen-associated proteins such as the proteoglycan decorin which helps collagen fibrils assemble, and a marked increase for genes that encode proteases such as cathepsins. Indeed, enzyme activity for cathepsin B (CtsB) was 19-fold normal. MPS VII dogs that received neonatal intravenous injection of a gamma retroviral vector had an improved signal for structurally-intact collagen, and reduced CtsB activity relative to that seen in untreated MPS VII dogs. We conclude that MR in untreated MPS VII dogs was likely due to abnormalities in MV collagen structure. This could be due to upregulation of enzymes that degrade collagen or collagen-associated proteins, to the accumulation of GAGs that compete with proteoglycans such as decorin for binding to collagen, or to other causes. Further delineation of the etiology of abnormal collagen structure may lead to treatments that improve biomechanical properties of the MV and other tissues.


Assuntos
Doenças das Valvas Cardíacas/etiologia , Valva Mitral/patologia , Mucopolissacaridose VII/complicações , Animais , Cordas Tendinosas/metabolismo , Colágeno/metabolismo , Cães , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Masculino , Valva Mitral/metabolismo , Mucopolissacaridose VII/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Transdução de Sinais
6.
Mol Genet Metab ; 110(3): 311-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23860311

RESUMO

Mucopolysaccharidosis VII (MPS VII) is due to deficient activity of the lysosomal enzyme ß-glucuronidase (GUSB) and results in the accumulation of glycosaminoglycans (GAGs). This study determined the long-term effect of neonatal intravenous injection of a gamma retroviral vector (RV) on cardiac valve disease in MPS VII dogs. Transduced hepatocytes secreted GUSB into the blood for up to 11 years at levels similar to or greater than those achieved with enzyme replacement therapy (ERT). Valve regurgitation and thickening were scored from 0 (normal) to +4 (severely abnormal). At 1 year, untreated MPS VII dogs had mitral regurgitation, mitral valve thickening, aortic regurgitation, and aortic valve thickening scores of 2.3 ± 0.7, 2.3 ± 0.6, 1.8 ± 0.5, and 1.6 ± 0.7, respectively, which were higher than the values of 0.6 ± 0.1, 0.1 ± 0.4, 0.3 ± 0.8, and 0.1 ± 0.4, respectively, in treated MPS VII dogs. Treated MPS VII dogs maintained low aortic regurgitation and aortic valve thickening scores in their lifetime. Although mitral regurgitation and mitral valve thickening scores increased to 2.0 at ≥ 8 years of age in the treated MPS VII dogs, older normal dogs from the colony had similar scores, making it difficult to assess mitral valve disease. Older treated dogs had calcification within the mitral and the aortic valve annulus, while GUSB staining demonstrated enzyme activity within the mitral valve. We conclude that neonatal RV-mediated gene therapy reduced cardiac valve disease in MPS VII dogs for up to 11 years, and propose that neonatal initiation of ERT should have a similar effect.


Assuntos
Gammaretrovirus/genética , Terapia Genética , Vetores Genéticos/genética , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/terapia , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/genética , Animais , Animais Recém-Nascidos , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Modelos Animais de Doenças , Cães , Ecocardiografia , Feminino , Glucuronidase/genética , Glucuronidase/metabolismo , Doenças das Valvas Cardíacas/diagnóstico por imagem , Masculino , Valva Mitral/diagnóstico por imagem , Valva Mitral/patologia
7.
Mol Genet Metab ; 109(2): 183-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23628461

RESUMO

Mucopolysaccharidosis (MPS) VII is a lysosomal storage disease due to deficient activity of ß-glucuronidase (GUSB), and results in glycosaminoglycan accumulation. Skeletal manifestations include bone dysplasia, degenerative joint disease, and growth retardation. One gene therapy approach for MPS VII involves neonatal intravenous injection of a gamma retroviral vector expressing GUSB, which results in stable expression in liver and secretion of enzyme into blood at levels predicted to be similar or higher to enzyme replacement therapy. The goal of this study was to evaluate the long-term effect of neonatal gene therapy on skeletal manifestations in MPS VII dogs. Treated MPS VII dogs could walk throughout their lives, while untreated MPS VII dogs could not stand beyond 6 months and were dead by 2 years. Luxation of the coxofemoral joint and the patella, dysplasia of the acetabulum and supracondylar ridge, deep erosions of the distal femur, and synovial hyperplasia were reduced, and the quality of articular bone was improved in treated dogs at 6 to 11 years of age compared with untreated MPS VII dogs at 2 years or less. However, treated dogs continued to have osteophyte formation, cartilage abnormalities, and an abnormal gait. Enzyme activity was found near synovial blood vessels, and there was 2% as much GUSB activity in synovial fluid as in serum. We conclude that neonatal gene therapy reduces skeletal abnormalities in MPS VII dogs, but clinically-relevant abnormalities remain. Enzyme replacement therapy will probably have similar limitations long-term.


Assuntos
Glucuronidase/genética , Mucopolissacaridose VII/terapia , Animais , Animais Recém-Nascidos , Cães , Feminino , Cabeça do Fêmur/patologia , Terapia Genética , Glucuronidase/metabolismo , Membro Posterior/patologia , Cápsula Articular/irrigação sanguínea , Cápsula Articular/enzimologia , Articulações/patologia , Masculino , Mucopolissacaridose VII/diagnóstico por imagem , Mucopolissacaridose VII/patologia , Radiografia , Resultado do Tratamento
8.
Bone ; 55(1): 78-83, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23563357

RESUMO

INTRODUCTION: Mucopolysaccharidosis I (MPS I) is a lysosomal storage disorder characterized by deficient α-l-iduronidase activity leading to accumulation of poorly degraded dermatan and heparan sulfate glycosaminoglycans (GAGs). MPS I is associated with significant cervical spine disease, including vertebral dysplasia, odontoid hypoplasia, and accelerated disk degeneration, leading to spinal cord compression and kypho-scoliosis. The objective of this study was to establish the nature and rate of progression of cervical vertebral bone disease in MPS I using a canine model. METHODS: C2 vertebrae were obtained post-mortem from normal and MPS I dogs at 3, 6 and 12 months-of-age. Morphometric parameters and mineral density for the vertebral trabecular bone and odontoid process were determined using micro-computed tomography. Vertebrae were then processed for paraffin histology, and cartilage area in both the vertebral epiphyses and odontoid process were quantified. RESULTS: Vertebral bodies of MPS I dogs had lower trabecular bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and bone mineral density (BMD) than normals at all ages. For MPS I dogs, BV/TV, Tb.Th and BMD plateaued after 6 months-of-age. The odontoid process appeared morphologically abnormal for MPS I dogs at 6 and 12 months-of-age, although BV/TV and BMD were not significantly different from normals. MPS I dogs had significantly more cartilage in the vertebral epiphyses at both 3 and 6 months-of-age. At 12 months-of-age, epiphyseal growth plates in normal dogs were absent, but in MPS I dogs they persisted. CONCLUSIONS: In this study we report reduced trabecular bone content and mineralization, and delayed cartilage to bone conversion in MPS I dogs from 3 months-of-age, which may increase vertebral fracture risk and contribute to progressive deformity. The abnormalities of the odontoid process we describe likely contribute to increased incidence of atlanto-axial subluxation observed clinically. Therapeutic strategies that enhance bone formation may decrease incidence of spine disease in MPS I patients.


Assuntos
Vértebras Cervicais/patologia , Progressão da Doença , Mucopolissacaridose I/patologia , Doenças da Coluna Vertebral/patologia , Animais , Animais Recém-Nascidos , Cartilagem/diagnóstico por imagem , Cartilagem/patologia , Vértebras Cervicais/diagnóstico por imagem , Cães , Mucopolissacaridose I/diagnóstico por imagem , Processo Odontoide/diagnóstico por imagem , Processo Odontoide/patologia , Doenças da Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X
9.
J Inherit Metab Dis ; 36(3): 499-512, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22983812

RESUMO

Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to α-L-iduronidase (IDUA) deficiency that results in the accumulation of glycosaminoglycans (GAG). Systemic gene therapy to MPS I mice can reduce lysosomal storage in the brain, but few data are available regarding the effect upon behavioral function. We investigated the effect of gene therapy with a long-terminal-repeat (LTR)-intact retroviral vector or a self-inactivating (SIN) vector on behavioral function in MPS I mice. The LTR vector was injected intravenously to 6-week-old MPS I mice, and the SIN vector was given to neonatal or 6-week-old mice. Adult-LTR, neonatal-SIN, and adult-SIN-treated mice achieved serum IDUA activity of 235 ± 20 (84-fold normal), 127 ± 10, and 71 ± 7 U/ml, respectively. All groups had reduction in histochemical evidence of lysosomal storage in the brain, with the adult-LTR group showing the best response, while adult-LTR mice had reductions in lysosomal storage in the cristae of the vestibular system. Behavioral evaluation was performed at 8 months. Untreated MPS I mice had a markedly reduced ability to hold onto an inverted screen or climb down a pole. LTR-vector-treated mice had marked improvements on both of these tests, whereas neonatal-SIN mice showed improvement in the pole test. We conclude that both vectors can reduce brain disease in MPS I mice, with the LTR vector achieving higher serum IDUA levels and better correction. Vestibular abnormalities may contribute to mobility problems in patients with MPS I, and gene therapy may reduce symptoms.


Assuntos
Terapia Genética/métodos , Iduronidase/genética , Transtornos Mentais/prevenção & controle , Doença dos Neurônios Motores/prevenção & controle , Mucopolissacaridose I/terapia , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Encéfalo/enzimologia , Encéfalo/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Transtornos Mentais/etiologia , Transtornos Mentais/genética , Camundongos , Camundongos Endogâmicos C57BL , Doença dos Neurônios Motores/etiologia , Neurônios Motores/fisiologia , Mucopolissacaridose I/complicações , Retroviridae
10.
Mol Ther ; 21(5): 915-916, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-28178546
11.
Behav Brain Res ; 233(1): 169-75, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22580166

RESUMO

Mucopolysaccharidosis (MPS) type I (Hurler syndrome) is a lysosomal storage disorder characterized by deficiency of alpha-L-iduronidase (IDUA), intracellular storage of glycosaminoglycans (GAGs) and progressive neurological pathology. The MPS I mouse model provides an opportunity to study the pathophysiology of this disorder and to determine the efficacy of novel therapies. Previous work has demonstrated a series of abnormalities in MPS I mice behavior, but so far some important brain functions have not been addressed. Therefore, in the present study we aimed to determine if MPS I mice have motor abnormalities, and at what age they become detectable. MPS I and normal male mice from 2 to 8 months of age were tested in open-field for locomotor activity, hindlimb gait analysis and hang wire performance. We were able to detect a progressive reduction in the crossings and rearings in the open field test and in the hang wire test in MPS I mice from 4 months, as well as a reduction in the gait length at 8 months. Histological examination of 8-month old mice cortex and cerebellum revealed storage of GAGs in Purkinje cells and neuroinflammation, evidenced by GFAP immunostaining. However TUNEL staining was negative, suggesting that death does not occur. Our findings suggest that MPS I mice have a progressive motor dysfunction, which is not caused by loss of neuron cells but might be related to a neuroinflammatory process.


Assuntos
Transtornos dos Movimentos/etiologia , Mucopolissacaridose I/complicações , Mucopolissacaridose I/genética , Fatores Etários , Idade de Início , Animais , Modelos Animais de Doenças , Progressão da Doença , Marcha/genética , Marcha/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Glicosaminoglicanos/urina , Força da Mão/fisiologia , Iduronidase/deficiência , Marcação In Situ das Extremidades Cortadas , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/genética , Mucopolissacaridose I/urina
12.
Mol Genet Metab ; 107(1-2): 145-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22510705

RESUMO

Mucopolysaccharidosis VII (MPS VII) is due to deficient ß-glucuronidase (GUSB) activity, which leads to accumulation of chondroitin, heparan, and dermatan sulfate glycosaminoglycans in various tissues including those of the spine. Associated spine disease can be due to abnormalities in the vertebrae, the intervertebral disks, or other spine tissues. The goal of this study was to determine if neonatal gene therapy could prevent lumbar spine disease in MPS VII dogs. MPS VII dogs were injected intravenously with a retroviral vector (RV) expressing canine GUSB at 2 to 3 days after birth, which resulted in transduction of hepatocytes that secreted GUSB into blood. Expression was stable for up to 11 years, and mean survival was increased from 0.4 years in untreated dogs to 6.1 years in treated dogs. Despite a profound positive clinical effect, 6-month-old RV-treated MPS VII dogs still had hypoplastic ventral epiphyses with reduced calcification in the lumbar spine, which resulted in a reduced stiffness and increased range of motion that were not improved relative to untreated MPS VII dogs. At six to 11 years of age, ventral vertebrae remained hypoplastic in RV-treated MPS VII dogs, and there was desiccation of the nucleus pulposus in some disks. Histochemical staining demonstrated that disks did not have detectable GUSB activity despite high serum GUSB activity, which is likely due to poor diffusion into this relatively avascular structure. Thus, neonatal gene therapy cannot prevent lumbar spine disease in MPS VII dogs, which predicts that enzyme replacement therapy (ERT) will similarly be relatively ineffective even if started at birth.


Assuntos
Terapia Genética , Vértebras Lombares , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/terapia , Doenças da Coluna Vertebral/etiologia , Doenças da Coluna Vertebral/terapia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Fenômenos Biomecânicos , Cálcio/metabolismo , Cães , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glucuronidase/sangue , Glicosaminoglicanos/urina , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Masculino , Mucopolissacaridose VII/mortalidade , Radiografia , Retroviridae/genética , Doenças da Coluna Vertebral/diagnóstico
13.
Mol Genet Metab ; 107(1-2): 153-60, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22513347

RESUMO

Mucopolysaccharidosis type VII (MPS VII) is characterized by deficient ß-glucuronidase (GUSB) activity, which leads to accumulation of chondroitin, heparan and dermatan sulfate glycosaminoglycans (GAGs), and multisystemic disease. MPS VII patients can develop kypho-scoliotic deformity and spinal cord compression due to disease of intervertebral disks, vertebral bodies, and associated tissues. We have previously demonstrated in MPS VII dogs that intervertebral disks degenerate, vertebral bodies have irregular surfaces, and vertebral body epiphyses have reduced calcification, but the pathophysiological mechanisms underlying these changes are unclear. We hypothesized that some of these manifestations could be due to upregulation of destructive proteases, possibly via the binding of GAGs to Toll-like receptor 4 (TLR4), as has been proposed for other tissues in MPS models. In this study, the annulus fibrosus of the intervertebral disk of 6-month-old MPS VII dogs had cathepsin B and K activities that were 117- and 2-fold normal, respectively, which were associated with elevations in mRNA levels for these cathepsins as well as TLR4. The epiphyses of MPS VII dogs had a marked elevation in mRNA for the cartilage-associated gene collagen II, consistent with a developmental delay in the conversion of the cartilage to bone in this region. The spine obtained at autopsy from a young man with MPS VII exhibited similar increased cartilage in the vertebral bodies adjacent to the end plates, disorganization of the intervertebral disks, and irregular vertebral end plate morphology. These data suggest that the pathogenesis of destructive changes in the spine in MPS VII may involve upregulation of cathepsins. Inhibition of destructive proteases, such as cathepsins, might reduce spine disease in patients with MPS VII or related disorders.


Assuntos
Vértebras Lombares , Mucopolissacaridose VII/complicações , Doenças da Coluna Vertebral/etiologia , Animais , Animais Geneticamente Modificados , Catepsinas/genética , Catepsinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Cães , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radiografia , Doenças da Coluna Vertebral/diagnóstico por imagem , Doenças da Coluna Vertebral/patologia
14.
Mol Ther ; 20(5): 898-907, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22395531

RESUMO

Mucopolysaccharidosis (MPS) VI is due to a deficiency in the activity of N-acetylgalactosamine 4-sulfatase (4S), also known as arylsulfatase B. Previously, retroviral vector (RV)-mediated neonatal gene therapy reduced the clinical manifestations of MPS I and MPS VII in mice and dogs. However, sulfatases require post-translational modification by sulfatase-modifying factors. MPS VI cats were injected intravenously (i.v.) with a gamma RV-expressing feline 4S, resulting in 5 ± 3 copies of RV per 100 cells in liver. Liver and serum 4S activity were 1,450 ± 1,720 U/mg (26-fold normal) and 107 ± 60 U/ml (13-fold normal), respectively, and were directly proportional to the liver 4S protein levels for individual cats. This study suggests that sulfatase-modifying factor (SUMF) activity in liver was sufficient to result in active enzyme despite overexpression of 4S. RV-treated MPS VI cats achieved higher body weights and longer appendicular skeleton lengths, had reduced articular cartilage erosion, and reduced aortic valve thickening and aortic dilatation compared with untreated MPS VI cats, although cervical vertebral bone lengths were not improved. This demonstrates that therapeutic expression of a functional sulfatase protein can be achieved with neonatal gene therapy using a gamma RV, but some aspects of bone disease remain difficult to treat.


Assuntos
Doenças do Gato/terapia , Vírus da Leucemia Murina de Moloney/genética , Mucopolissacaridose VI/veterinária , N-Acetilgalactosamina-4-Sulfatase/genética , Animais , Animais Recém-Nascidos , Peso Corporal , Doenças do Gato/enzimologia , Doenças do Gato/genética , Gatos , Feminino , Terapia Genética , Vetores Genéticos , Injeções Intravenosas , Masculino , Mucopolissacaridose VI/enzimologia , Mucopolissacaridose VI/genética , Mucopolissacaridose VI/terapia , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Processamento de Proteína Pós-Traducional
17.
Mol Genet Metab ; 104(4): 608-19, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21944884

RESUMO

Mucopolysaccharidosis VII (MPS VII) is due to mutations within the gene encoding the lysosomal enzyme ß-glucuronidase, and results in the accumulation of glycosaminoglycans. MPS VII causes aortic dilatation and elastin fragmentation, which is associated with upregulation of the elastases cathepsin S (CtsS) and matrix metalloproteinase 12 (MMP12). To test the role of these enzymes, MPS VII mice were crossed with mice deficient in CtsS or MMP12, and the effect upon aortic dilatation was determined. CtsS deficiency did not protect against aortic dilatation in MPS VII mice, but also failed to prevent an upregulation of cathepsin enzyme activity. Further analysis with substrates and inhibitors specific for particular cathepsins suggests that this enzyme activity was due to CtsB, which could contribute to elastin fragmentation. Similarly, MMP12 deficiency and deficiency of both MMP12 and CtsS could not prevent aortic dilatation in MPS VII mice. Microarray and reverse-transcriptase real-time PCR were performed to look for upregulation of other elastases. This demonstrated that mRNA for complement component D was elevated in MPS VII mice, while immunostaining demonstrated high levels of complement component C3 on surfaces within the aortic media. Finally, we demonstrate that neonatal intravenous injection of a retroviral vector encoding ß-glucuronidase reduced aortic dilatation. We conclude that neither CtsS nor MMP12 are necessary for elastin fragmentation in MPS VII mouse aorta, and propose that CtsB and/or complement component D may be involved. Complement may be activated by the GAGs that accumulate, and may play a role in signal transduction pathways that upregulate elastases.


Assuntos
Doenças da Aorta/etiologia , Ativação do Complemento , Dilatação Patológica/etiologia , Mucopolissacaridose VII/complicações , Animais , Aorta/metabolismo , Aorta/patologia , Aorta/fisiopatologia , Doenças da Aorta/metabolismo , Doenças da Aorta/fisiopatologia , Catepsinas/deficiência , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Elastina/metabolismo , Perfilação da Expressão Gênica , Terapia Genética , Glucuronidase/biossíntese , Glucuronidase/sangue , Glucuronidase/genética , Glicosaminoglicanos/metabolismo , Masculino , Metaloproteinase 12 da Matriz/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucopolissacaridose VII/fisiopatologia , Mucopolissacaridose VII/terapia , Análise de Sequência com Séries de Oligonucleotídeos , Elastase Pancreática/genética , Elastase Pancreática/metabolismo , Transdução de Sinais , Extratos de Tecidos , Regulação para Cima
18.
J Inherit Metab Dis ; 34(6): 1183-97, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21744090

RESUMO

The mucopolysaccharidoses (MPSs) are inherited lysosomal storage disorders caused by the absence of functional enzymes that contribute to the degradation of glycosaminoglycans (GAGs). The progressive systemic deposition of GAGs results in multi-organ system dysfunction that varies with the particular GAG deposited and the specific enzyme mutation(s) present. Cardiac involvement has been reported in all MPS syndromes and is a common and early feature, particularly for those with MPS I, II, and VI. Cardiac valve thickening, dysfunction (more severe for left-sided than for right-sided valves), and hypertrophy are commonly present; conduction abnormalities, coronary artery and other vascular involvement may also occur. Cardiac disease emerges silently and contributes significantly to early mortality.The clinical examination of individuals with MPS is often difficult due to physical and, sometimes, intellectual patient limitations. The absence of precordial murmurs does not exclude the presence of cardiac disease. Echocardiography and electrocardiography are key diagnostic techniques for evaluation of valves, ventricular dimensions and function, which are recommended on a regular basis. The optimal technique for evaluation of coronary artery involvement remains unsettled.Standard medical and surgical techniques can be modified for MPS patients, and systemic therapies such as hematopoietic stem cell transplantation and enzyme replacement therapy (ERT) may alter overall disease progression with regression of ventricular hypertrophy and maintenance of ventricular function. Cardiac valve disease is usually unresponsive or, at best, stabilized, although ERT within the first few months of life may prevent valve involvement, a fact that emphasizes the importance of early diagnosis and treatment in MPS.


Assuntos
Glicosaminoglicanos/metabolismo , Doenças das Valvas Cardíacas/diagnóstico , Doenças das Valvas Cardíacas/epidemiologia , Hipertrofia Ventricular Esquerda/diagnóstico , Hipertrofia Ventricular Esquerda/epidemiologia , Mucopolissacaridoses/epidemiologia , Adolescente , Adulto , Idade de Início , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/epidemiologia , Causalidade , Criança , Pré-Escolar , Comorbidade , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Ecocardiografia , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência da Valva Mitral/diagnóstico , Insuficiência da Valva Mitral/epidemiologia , Mucopolissacaridoses/classificação , Mucopolissacaridoses/terapia , Taquicardia Sinusal/diagnóstico , Taquicardia Sinusal/epidemiologia
19.
J Vet Cardiol ; 13(2): 131-40, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21640678

RESUMO

Gene therapy is a procedure resulting in the transfer of a gene(s) into an individual's cells to treat a disease, which is designed to produce a protein or functional RNA (the gene product). Although most current gene therapy clinical trials focus on cancer and inherited diseases, multiple studies have evaluated the efficacy of gene therapy to abrogate various forms of heart disease. Indeed, human clinical trials are currently underway. One goal of gene transfer may be to express a functional gene when the endogenous gene is inactive. Alternatively, complex diseases such as end stage heart failure are characterized by a number of abnormalities at the cellular level, many of which can be targeted using gene delivery to alter myocardial protein levels. This review will discuss issues related to gene vector systems, gene delivery strategies and two cardiovascular diseases in dogs successfully treated with therapeutic gene delivery.


Assuntos
Doenças Cardiovasculares/veterinária , Doenças do Gato/terapia , Doenças do Cão/terapia , Técnicas de Transferência de Genes/veterinária , Terapia Genética/veterinária , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Doenças do Gato/genética , Gatos , Doenças do Cão/genética , Cães , Terapia Genética/métodos
20.
Mol Ther ; 19(3): 427-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21358702
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA