Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Total Environ ; 917: 170470, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38286281

RESUMO

There is a growing demand for technologies able to decrease the environmental impact of agricultural activities without penalizing quali-quantitative characteristics of productions. In the case of viticulture, one of the key problems is represented by the spray drift during fungicide treatments. The diffusion in operational farming contexts of technologies based on variable-rate and recycling tunnel sprayers is often limited by their cost and, for the latter, by their size and lower maneuverability, representing clear disadvantages especially in case of small farms or in hilly and mountain areas. We present a new digital technology implemented in a mobile app that supports the reduction of both the number of treatments and the amount of fungicide distributed per treatment. The technology is based (i) on an alert system that prevents unneeded treatments in case of no risk of infection and (ii) on the quantification of the optimal amounts of active ingredients and dilution water based on the sprayer type/settings and on leaf area index values estimated with a common smartphone. An internal database allows to adjust (in case of need) the active ingredient dose to assure full compliance with product's legal requirements. In case of heterogeneity in leaf area index values inside the vineyard, prescription maps are generated. Results from a 2-year case study in a vineyard in northern Italy are shown, where the system allowed to reduce by 26.4 % and 27.4 % (mean of two years), respectively, the seasonal amounts of fungicides and dilution water, and by 43.8 % the copper content in must. The high usability of the technology proposed (just a common smartphone is needed) and the fact that it does not require updating the farm machine park highlights the suitability of the proposed solution for operational farming conditions, including premium wine production districts often characterized by small farms in hilly areas.

2.
Ann Bot ; 132(5): 1033-1050, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850481

RESUMO

Anthocyanin composition is responsible for the red colour of grape berries and wines, and contributes to their organoleptic quality. However, anthocyanin biosynthesis is under genetic, developmental and environmental regulation, making its targeted fine-tuning challenging. We constructed a mechanistic model to simulate the dynamics of anthocyanin composition throughout grape ripening in Vitis vinifera, employing a consensus anthocyanin biosynthesis pathway. The model was calibrated and validated using six datasets from eight cultivars and 37 growth conditions. Tuning the transformation and degradation parameters allowed us to accurately simulate the accumulation process of each individual anthocyanin under different environmental conditions. The model parameters were robust across environments for each genotype. The coefficients of determination (R2) for the simulated versus observed values for the six datasets ranged from 0.92 to 0.99, while the relative root mean square errors (RRMSEs) were between 16.8 and 42.1 %. The leave-one-out cross-validation for three datasets showed R2 values of 0.99, 0.96 and 0.91, and RRMSE values of 28.8, 32.9 and 26.4 %, respectively, suggesting a high prediction quality of the model. Model analysis showed that the anthocyanin profiles of diverse genotypes are relatively stable in response to parameter perturbations. Virtual experiments further suggested that targeted anthocyanin profiles may be reached by manipulating a minimum of three parameters, in a genotype-dependent manner. This model presents a promising methodology for characterizing the temporal progression of anthocyanin composition, while also offering a logical foundation for bioengineering endeavours focused on precisely adjusting the anthocyanin composition of grapes.


Assuntos
Vitis , Vinho , Vitis/genética , Antocianinas/análise , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Vinho/análise
3.
Sci Rep ; 13(1): 16818, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798342

RESUMO

A web-based app was developed and tested to provide predictions of phenological stages of budburst, flowering and veraison, as well as warnings for meteorological drought. Such predictions are especially urgent under a climate change scenario where earlier phenology and water scarcity are increasingly frequent. By utilizing a calibration data set provided by 25 vineyards observed in the Emilia Romagna Region for two years (2021-2022), the above stages were predicted as per the binary event classification paradigm and selection of the best fitting algorithm based on the comparison between several metrics. The seasonal vineyard water balance was calculated by subtracting daily bare or grassed soil evapotranspiration (ETs) and canopy transpiration (Tc) from the initial water soil reservoir. The daily canopy water use was estimated through a multiple, non-linear (quadratic) regression model employing three independent variables defined as total direct light, vapor pressure deficit and total canopy light interception, whereas ETS was entered as direct readings taken with a closed-type chamber system. Regardless of the phenological stage, the eXtreme Gradient Boosting (XGBoost) model minimized the prediction error, which was determined as the root mean square error (RMSE) and found to be 5.6, 2.3 and 8.3 days for budburst, flowering and veraison, respectively. The accuracy of the drought warnings, which were categorized as mild (yellow code) or severe (red code), was assessed by comparing them to in situ readings of leaf gas exchange and water status, which were found to be correct in 9 out of a total of 14 case studies. Regardless of the geolocation of a vineyard and starting from basic in situ or online weather data and elementary vineyard and soil characteristics, the tool can provide phenology forecasts and early warnings of meteorological drought with no need for fixed, bulky and expensive sensors to measure soil or plant water status.

4.
Front Plant Sci ; 14: 1227628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528986

RESUMO

Summer pruning encompasses a series of operations typically performed on the grapevine during the growing season. This review provides an update on the research conducted over the last 20 years on the modalities and strategies of main summer pruning operations, which include shoot positioning and thinning, shoot trimming, leaf removal, and cluster thinning, with a special focus on their adaptation to climate change occurring in Mediterranean areas. Three main novelties emerged from the survey. First, due to a common need to shelter clusters against overheating and sunburn-related damages, shoot thinning and leaf removal are practices that are now being applied in a much more cautious and conservative manner. Second, the meaning of summer pruning is evolving because operations are being used as precious tools to direct ripening toward a desired direction rather than being received passively. Third, some operations, such as leaf removal, have disclosed very high plasticity, which means that, depending on the timing and modalities of the intervention, yield can be either increased or decreased and ripening anticipated or postponed. In an era where economic and environmental sustainability have to find a good compromise, cluster thinning is increasingly being depicted as an extraordinary operation that should be left to occasional occurrences of overcropping. Moreover, summer pruning is a tool through which growers can, to an extent, exploit the potentialities offered by climate change. For instance, the crop-forcing technique, under the different configurations of single and double cropping within the same season, has been trialed promisingly in several regions and cultivars. The principle of forcing is to unlock the dormant bud during the first year by removing at least the young organs present on the shoot within a time window between the end of the flowering and pea-size stages. In particular, when it is applied in a double-cropping mode, the preliminary results related to Pinot noir, Grenache, Tempranillo, and Maturana tinta indicate that two harvests separated by 30-50 days can be obtained, with the latter having superior quality in terms of a lower level of pH and higher levels of acidity, anthocyanins, and phenolics.

5.
Sci Rep ; 13(1): 721, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639732

RESUMO

Increasing the use of cover crops (CCs) is a necessity in sustainable viticulture, although it might clash with possible excessive competition towards vines. Especially in a climate-change scenario, the latter feature should be minimized while maintaining ecosystem services. Aimed at identifying CCs for vineyard floor management, the trial characterized several species according to their evapotranspiration (ET) rates, root growth patterns, and soil aggregate stability potential. The study was performed in 2020 in Piacenza (Northern Italy) on 15 CC species grown in pots kept outdoor and classified as grasses (GR), legumes (LE) and creeping (CR). Together with bare soil (control), they were arranged in a complete randomized block design. CCs ET was assessed through a gravimetric method, starting before mowing and then repeated 2, 8, 17 and 25 days thereafter. Above-ground dry biomass (ADW), root length density (RLD), root dry weight (RDW) and root diameter class length (DCL) were measured, and mean weight diameter (MWD) was calculated within 0-20 cm depth. Before mowing, ET was the highest in LE (18.6 mm day-1) and the lowest in CR (8.1 mm day-1) the latter being even lower than the control (8.5 mm day-1). The high ET rates shown by LE were mainly related to very fast development after sowing, rather than to a higher transpiration per unit of leaf area. After mowing, the 15 species' ET reduction (%) plotted vs leaf area index (LAI, m2 m-2) yielded a very close fit (R2 = 0.94), suggesting that (i) a linear decrease in water use is expected anytime starting with an initial LAI of 5-6, (ii) a saturation effect seems to be reached beyond this limit. Selection of cover crop species to be used in the vineyard was mainly based on diurnal and seasonal water use rates as well as dynamic and extent of root growth patterns. Among GR, Festuca ovina stood out as the one with the lowest ET due to its "dwarfing" characteristics, making it suitable for a permanent inter-row covering. CR species confirmed their potential for under-vine grassing, assuring rapid soil coverage, lowest ET rates, and shallow root colonization.


Assuntos
Ecossistema , Solo , Água , Biomassa , Poaceae , Produtos Agrícolas , Verduras
6.
Sensors (Basel) ; 22(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36081033

RESUMO

Hyperspectral aerial imagery is becoming increasingly available due to both technology evolution and a somewhat affordable price tag. However, selecting a proper UAV + hyperspectral sensor combo to use in specific contexts is still challenging and lacks proper documental support. While selecting an UAV is more straightforward as it mostly relates with sensor compatibility, autonomy, reliability and cost, a hyperspectral sensor has much more to be considered. This note provides an assessment of two hyperspectral sensors (push-broom and snapshot) regarding practicality and suitability, within a precision viticulture context. The aim is to provide researchers, agronomists, winegrowers and UAV pilots with dependable data collection protocols and methods, enabling them to achieve faster processing techniques and helping to integrate multiple data sources. Furthermore, both the benefits and drawbacks of using each technology within a precision viticulture context are also highlighted. Hyperspectral sensors, UAVs, flight operations, and the processing methodology for each imaging type' datasets are presented through a qualitative and quantitative analysis. For this purpose, four vineyards in two countries were selected as case studies. This supports the extrapolation of both advantages and issues related with the two types of hyperspectral sensors used, in different contexts. Sensors' performance was compared through the evaluation of field operations complexity, processing time and qualitative accuracy of the results, namely the quality of the generated hyperspectral mosaics. The results shown an overall excellent geometrical quality, with no distortions or overlapping faults for both technologies, using the proposed mosaicking process and reconstruction. By resorting to the multi-site assessment, the qualitative and quantitative exchange of information throughout the UAV hyperspectral community is facilitated. In addition, all the major benefits and drawbacks of each hyperspectral sensor regarding its operation and data features are identified. Lastly, the operational complexity in the context of precision agriculture is also presented.


Assuntos
Cytisus , Tecnologia de Sensoriamento Remoto , Agricultura , Coleta de Dados , Tecnologia de Sensoriamento Remoto/métodos , Reprodutibilidade dos Testes
7.
Front Plant Sci ; 13: 898722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769294

RESUMO

Over the last 50 years, many approaches for extracting plant key parameters from remotely sensed data have been developed, especially in the last decade with the spread of unmanned aerial vehicles (UAVs) in agriculture. Multispectral sensors are very useful for the elaboration of common vegetation indices (VIs), however, the spectral accuracy and range may not be enough. In this scenario, hyperspectral (HS) technologies are gaining particular attention thanks to the highest spectral resolution, which allows deep characterization of vegetative/soil response. Literature presents few papers encompassing UAV-based HS applications in vineyard, a challenging conditions respect to other crops due to high presence of bare soil, grass cover, shadows and high heterogeneity canopy structure with different leaf inclination. The purpose of this paper is to present the first contribution combining traditional and multivariate HS data elaboration techniques, supported by strong ground truthing of vine ecophysiological, vegetative and productive variables. Firstly the research describes the UAV image acquisition and processing workflow to generate a 50 bands HS orthomosaic of a study vineyard. Subsequently, the spectral data extracted from 60 sample vines were elaborated both investigating the relationship between traditional narrowband VIs and grapevine traits. Then, multivariate calibration models were built using a double approach based on Partial Least Square (PLS) regression and interval-PLS (iPLS), to evaluate the correlation performance between the biophysical parameters and HS imagery using the whole spectral range and a selection of more relevant bands applying a variable selection algorithm, respectively. All techniques (VIs, PLS and iPLS) provided satisfactory correlation performances for the ecophysiological (R 2 = 0.65), productive (R 2 = 0.48), and qualitative (R 2 = 0.63) grape parameters. The novelty of this work is represented by the first assessment of a UAV HS dataset with the expression of the entire vine ecosystem, from the physiological and vegetative state to grapes production and quality, using narrowband VIs and multivariate PLS regressions. A correct non-destructive estimation of key parameters in vineyard, above all physiological parameters which must be measured in a short time as they are extremely influenced by the variability of environmental conditions during the day, represents a powerful tool to support the winegrower in vineyard management.

8.
Planta ; 253(3): 73, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33615406

RESUMO

MAIN CONCLUSION: A reprogramming of secondary metabolism to acclimate to nitrogen deficiency was seen in grapevine eliciting an accumulation of strigolactones and jasmonate. This response links with photosynthetic compensation and enhanced ripening. In addition to the metabolism directly related to nitrogen assimilation, long-term nitrogen depletion may affect plant secondary metabolism, in turn affecting grapevine performance. In this work, the effect of nitrogen deficit was investigated in V. vinifera cv. Barbera potted vines following three years of deprivation, using a combination of morpho-physiological assessments and mass spectrometry-based untargeted metabolomics. Plants grown under nitrogen limitation showed reduced growth and even more curtailed yields, lowered SPAD values, and a quite preserved leaf gas exchange, compared to plants grown under non-limiting nitrogen availability. Ripening was decidedly accelerated, and berry composition improved in terms of higher sugar and phenolic contents under nitrogen-limiting conditions. Metabolomics showed the broad involvement of secondary metabolism in acclimation to nitrogen deficiency, including a distinctive modulation of the phytohormone profile. Several nitrogen-containing metabolites were down accumulated under nitrogen-limiting conditions, including alkaloids, glucosinolates, hypoxanthine, and inosine. On the other hand, phenylpropanoids showed an accumulation trend. Concerning the recruitment of hormones, nitrogen deprivation elicited an accumulation of strigolactones and jasmonate. Noteworthy, both strigolactones and jasmonates have been previously related to increased photosynthetic efficiency under abiotic stress. Furthermore, the severe reduction of lateral shoot development we recorded in N-deprived vines is consistent with the accumulation of strigolactones. Overall, our results suggest that nitrogen deprivation induced a rather broad metabolic reprogramming, mainly including secondary metabolism and hormones profile, reflected in the modulation of photosynthetic performance, canopy growth, and possibly fruit quality.


Assuntos
Nitrogênio/metabolismo , Metabolismo Secundário , Vitis/metabolismo , Frutas/crescimento & desenvolvimento , Fotossíntese , Reguladores de Crescimento de Plantas , Folhas de Planta/metabolismo
9.
Plants (Basel) ; 11(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009039

RESUMO

Dark respiration (Rd) is a fundamental plant process used to gain biomass and maintain plant physiological activity. It accounts for the metabolization of a large share of the carbon fixed by photosynthesis. However, Rd during conditions of severe plant water stress is still poorly understood. The decrease in leaf transpiration increases temperature, one of the most important drivers of leaf Rd. On the other hand, water stress decreases the pool of leaf carbohydrates, which are the most important substrate for respiration. The aim of the present work was to determine the impact of water shortage on leaf Rd in grapevine and understand the driving factors in modulating leaf Rd response under plant water stress conditions. Water stressed vines had lower Rd as the water shortage severity increased. Rd was correlated with leaf temperature in well-watered vines. Instead, in water stressed vines, Rd correlated with leaf soluble sugars. The decrease of leaf Rd in water stressed vines was due to the decrease of leaf non-structural carbohydrate that, under water stress conditions, exerted a limiting effect on Rd.

10.
Plant Sci ; 299: 110600, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32900438

RESUMO

The rootstock M4 (V. vinifera × V. berlandieri) × V. berlandieri cv. Resseguier n.1) is a recent selection reported to confer improved drought tolerance to grafted V. vinifera scions, a very desired feature in the era of global warming. Therefore, a short-term study was performed on a batch of 12 potted cv. Sangiovese vines grafted either on M4 or on the drought susceptible SO4 rootstock. Ecophysiological assessments as whole canopy net CO2 exchange rate (NCER), transpiration (Tc), and pre-dawn leaf water potential (Ψpd) and UHPLC-ESI/QTOF-MS metabolomics were then used to investigate the different vine responses during water limiting conditions. Water stress was induced by applying 50 % of estimated daily water use from days of year 184-208. M4 was able to deliver similar CO2, at a significantly reduced water use, compared to SO4 grafting. In turn, this resulted in enhanced canopy water use efficiency (NCER/Tc ratio) quantified as +15.1 % during water stress and +21.7 % at re-watering. Untargeted metabolomics showed a similar modulation of brassinosteroids and ABA between the two rootstocks, whereas the up accumulation of cytokinins and gibberellins under drought was peculiar of M4 grafted vines. The increase in gibberellins, together with a concurrent down accumulation of chlorophyll precursors and catabolites and an up accumulation of folates in M4 rootstock suggests that the capacity of limiting reactive-oxygen-species and redox imbalance under drought stress was improved. Finally, distinctive osmolyte accumulation patterns could be observed, with SO4 investing more on proline and glycine-betaine content and M4 primarily showing polyols accumulation.


Assuntos
Secas , Vitis/fisiologia , Água/fisiologia , Transporte Biológico , Metabolômica , Raízes de Plantas/fisiologia , Estresse Fisiológico
11.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668754

RESUMO

In many viticulture regions, multiple summer stresses are occurring with increased frequency and severity because of warming trends. Kaolin-based particle film technology is a technique that can mitigate the negative effects of intense and/or prolonged drought on grapevine physiology. Although a primary mechanism of action of kaolin is the increase of radiation reflection, some indirect effects are the protection of canopy functionality and faster stress recovery by abscisic acid (ABA) regulation. The physiological mechanism underlying the kaolin regulation of canopy functionality under water deficit is still poorly understood. In a dry-down experiment carried out on grapevines, at the peak of stress and when control vines zeroed whole-canopy net CO2 exchange rates/leaf area (NCER/LA), kaolin-treated vines maintained positive NCER/LA (~2 µmol m-2 s-1) and canopy transpiration (E) (0.57 µmol m-2 s-1). Kaolin-coated leaves had a higher violaxanthin (Vx) + antheraxanthin (Ax) + zeaxanthin (Zx) pool and a significantly lower neoxanthin (Nx) content (VAZ) when water deficit became severe. At the peak of water shortage, leaf ABA suddenly increased by 4-fold in control vines, whereas in kaolin-coated leaves the variation of ABA content was limited. Overall, kaolin prevented the biosynthesis of ABA by avoiding the deviation of the VAZ epoxidation/de-epoxidation cycle into the ABA precursor (i.e., Nx) biosynthetic direction. The preservation of the active VAZ cycle and transpiration led to an improved dissipation of exceeding electrons, explaining the higher resilience of canopy functionality expressed by canopies sprayed by kaolin. These results point out the interaction of kaolin with the regulation of the VAZ cycle and the active mechanism of stomatal conductance regulation.


Assuntos
Ácido Abscísico/metabolismo , Caulim/farmacologia , Folhas de Planta/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Vitis/efeitos dos fármacos , Xantofilas/metabolismo , Dióxido de Carbono/metabolismo , Depressão Química , Secas , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Estresse Fisiológico , Vitis/metabolismo
12.
Front Plant Sci ; 11: 608, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477395

RESUMO

Global warming is endangering maintenance of optimal grape composition in white varietals aimed at sparkling wine making due to difficulties to maintain adequate acidity and fresh aromas. These troubles are being faced by the main white varietal of the Colli Piacentini district, named Ortrugo. Its vegetative and reproductive behavior was compared over 3 years with that of other minor autochthonous white varietals. Criteria set for adequate grape composition under sparkling vinification (total soluble solids at 20-21°Brix) and titratable acidity (TA) ≥ 6.5 g/L combined with Principal Component Analysis (PCA) on the measured variables allowed a thinnning down of the initial group of 17 to 7 varietals including Ortrugo, Bucalò, Barbesino, Lecco, Melara, Santa Maria and Molinelli. PCA isolated Ortrugo's behavior for inadequacy to maintain sufficient TA at harvest mostly due to extremely low malic acid concentration. However, time trend analyses of accumulation and degradation patterns of tartaric and malic acids disclosed that, in Ortrugo, the most limiting factors were more intense post-veraison tartaric acid dilution and a lower malic acid pool at veraison as compared to any other varietal. Conversely, Molinelli and Barbesino proved to be ideal material for sparkling wine purposes, as they associated to desirable agronomic features a strong ability to retain high TA with a well-balanced tartrate-to-malate ratio. Our study emphasizes that often neglected or superficially evaluated germplasm genetic resources might hide strong potential for adapting to challenges imposed by climate change in that representing an excellent tool for adaptation strategies.

13.
Front Plant Sci ; 11: 621585, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613590

RESUMO

Wine grape (Vitis vinifera L.) is the most widely cultivated fruit crop in the world. However, the climactic characteristics in some growing regions are suboptimal for grape production, including short season length and excess precipitation. Grape growers can utilize an array of methods to mitigate these issues, including "early leaf removal," a management practice involving the removal of leaves from selected basal nodes along shoots around bloom. This meta-analysis reviews the extensive literature on this practice, with specific regards to application at "pre-bloom" (PB). One hundred seventy-five publications on the topic of "early leaf removal" were identified using key terms and subsequently narrowed via eight data curation steps. The comparison between treated (PB) and control plants in these studies revealed two important results. First, PB lowered bunch rot disease (-61%), partially through reducing the compactness of clusters. Second, PB promoted a significant increase in fruit total soluble solids (°Brix, +5.2%), which was related to the increase in the leaf-to-fruit ratio. Furthermore, cultivar and rootstock were found to have a large influence on the success of PB, while the contribution of climate was smaller. In conclusion, PB significantly lowers yield and bunch rot disease and increases °Brix, both of which improve grape and wine quality.

14.
J Plant Physiol ; 242: 153020, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450036

RESUMO

Kaolin applications have been investigated in grapevines to understand cooling effects on leaves and clusters and the relative impact on gas exchange, leaf biochemistry, water use efficiency, glyco-metabolism and hormonal patterns. Several Almost all previous contributions have relied upon single-leaf measurements, leaving uncertainty on whole canopy performances, depending on the complexity of a canopy system vs. individual leaves. In our study, kaolin was sprayed at pre-veraison (DOY 204) on potted mature vines (cv. Sangiovese) and washed off a month later (DOY 233), while control vines were left unsprayed. Within control (C) and kaolin (KL) treated vines, well-watered (WW) and water stress (WS) treatments were also imposed over a 10-day period (DOY 208-217) and all vines were re-watered when the WS reached its peak (stem water potential between -1.3 and -1.6 MPa). Single leaf measurements included leaf surface temperature by thermal imaging (Leaf Tmean), assimilation (Leaf A), transpiration (Leaf E), stomatal conductance (Leaf gs) rates, Fv/Fm fluorescence ratio, pre-dawn and stem water potential. Concurrently, whole canopy gas exchange was monitored continuously from DOY 200-259 using a vine enclosure system and daily net CO2 exchange rate (NCER) and canopy transpiration (Ecanopy) were calculated and then normalized vs. leaf area per vine. Results report that for any of the parameters recorded at both levels (single leaf and whole canopy), there was good agreement in terms of relative changes. In absence of water stress, KL was able to improve leaf cooling, while slightly reducing photosynthetic and water loss rates. More interestingly, data taken under water deficit and upon re-watering support the hypothesis that KL can turn into a protective agent for leaf function. In fact, the lack of photo-inhibition and the maintenance of leaf evaporative cooling found in KL-WS at the peak of water-stress (Fv/Fm > 0.7, Leaf Tmean < 38°C and Ecanopy > 0.5mmol m-2 s-1) warranted a prompter recovery of leaf functions upon re-watering that did not occur in C-WS vines.


Assuntos
Caulim/farmacologia , Folhas de Planta/fisiologia , Vitis/fisiologia , Desidratação , Frutas/química , Frutas/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Temperatura , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento , Água/fisiologia
15.
J Sci Food Agric ; 99(14): 6350-6363, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31273796

RESUMO

BACKGROUND: Recent studies report that Ascophyllum nodosum extracts, once applied on the canopy of different crops, deliver positive effects, increasing yield, inducing tolerance to biotic stress, and improving the quality of products. However, the mechanisms of action are still unclear. In this research, vines subjected to multiple foliar applications of an A. nodosum extract (ANE) at label doses were compared with untreated vines (NTV) in accordance with a comparative approach. The investigation coupled a field experiment with a second trial conducted under semi-controlled conditions, to clarify the mechanisms of action involved. RESULTS: The biostimulant did not affect soluble solids or the acidity of grapes; instead, it improved their anthocyanin and phenolic concentrations and the respective profiles. At the time of harvest, anthocyanin, and phenolic concentration were increased by 10.4% and 14.5%, respectively, when compared to the NTV. These effects correlated with a specific modulation of genes involved in the flavonoid metabolic pathways. Moreover, grapes from ANE vines witnessed a significant reduction in the spreading of gray mold when they were either assessed in field conditions or in vitro, compared to the grapes of NTV vines. This was related to a significant upregulation of the defense-related genes of the plant. CONCLUSIONS: Overall, the results showed that A. nodosum extracts can be valuable tools in viticulture considering the emergence of challenging environmental conditions; hence, the regulation of specific metabolic pathways is the mechanism of action that leads to an increased tolerance of biotic stress and of changes in the content of grape metabolites. © 2019 Society of Chemical Industry.


Assuntos
Ascophyllum/química , Extratos Vegetais/farmacologia , Vitis/efeitos dos fármacos , Vitis/metabolismo , Antocianinas/análise , Antocianinas/metabolismo , Flavonoides/análise , Flavonoides/metabolismo , Frutas/química , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Fenóis/análise , Fenóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/química , Vitis/crescimento & desenvolvimento
16.
PLoS One ; 14(5): e0216421, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31141501

RESUMO

Reliability and economic assessment of the Multiplex® optical sensor employed for non-destructive grape parameters estimates was evaluated in 2017 against a wet chemistry approach in mature vineyards including five cultivars (two whites, two red and one pink colored) assuring a broad range of variation in both technological and phenolic maturity parameters. Among the five Multiplex (Mx) indices evaluated (SFR_R, FLAV, FLAV-UV, ANTH_RG and FERARI) in all cultivars with the exception of Barbera SFR_R showed a significant and linear correlation with total soluble solids (TSS) for TSS ≥ 10 °Brix. Conversely, no significant correlation was found between FLAV and total flavonols concentration, whereas a significant linear correlation was found in Barbera (R2 = 0.66) and Ervi (R2 = 0.63) when the FLAV index was replaced with the FLAV_UV index. Within each cultivar, both ANTH_RG and FERARI showed close correlations with total anthocyanins concentration determined by wet chemistry although under different model shapes. Expressing berry color accumulation on a per skin mass basis rather than for whole berry mass basis, allowed for better separation of behavior of single cultivars and improved accuracy of model fitting for the combination of Barbera and ANTH_RG. A strict linear correlation was always found, within each index, for Mx readings taken on the two opposite sides of the same cluster, implying no significant within-cluster differences in sugar, color and flavonol concentrations. Economic assessment of Mx by means of the Net Present Value (NPV) approach showed that Mx is economically viable for a two hectare vineyard cultivating three red grape varieties (90 samples per year) if its lifetime is at least 7 years. Conversely, if only two red varieties are grown Mx should be used at least 11 years to make it economic suitable. Bigger properties growing a higher number of red varieties are the more interested in Mx as the expected NPV assumes positive values with a Mx usage of minimum 3 years.


Assuntos
Antocianinas/metabolismo , Produção Agrícola , Frutas/crescimento & desenvolvimento , Vitis/crescimento & desenvolvimento , Análise Custo-Benefício
17.
J Exp Bot ; 70(9): 2505-2521, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30357362

RESUMO

The growth of fleshy fruits is still poorly understood as a result of the complex integration of water and solute fluxes, cell structural properties, and the regulation of whole plant source-sink relationships. To unravel the contribution of these processes to berry growth, a biophysical grape (Vitis vinifera L.) berry growth module was developed and integrated with a whole-plant functional-structural model, and was calibrated on two varieties, Cabernet Sauvignon and Sangiovese. The model captured well the variations in growth and sugar accumulation caused by environmental conditions, changes in leaf-to-fruit ratio, plant water status, and varietal differences, with obvious future application in predicting yield and maturity under a variety of production contexts and regional climates. Our analyses illustrated that grapevines strive to maintain proper ripening by partially compensating for a reduced source-sink ratio, and that under drought an enhanced berry sucrose uptake capacity can reverse berry shrinkage. Sensitivity analysis highlighted the importance of phloem hydraulic conductance, sugar uptake, and surface transpiration on growth, while suggesting that cell wall extensibility and the turgor threshold for cell expansion had minor effects. This study demonstrates that this integrated model is a useful tool in understanding the integration and relative importance of different processes in driving fleshy fruit growth.


Assuntos
Carbono/metabolismo , Vitis/metabolismo , Água/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Modelos Biológicos , Pressão Osmótica/fisiologia , Floema/crescimento & desenvolvimento , Floema/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Vitis/crescimento & desenvolvimento
18.
J Plant Physiol ; 232: 241-247, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30544052

RESUMO

Stomatal conductance is regulated by many factors such as air vapour pressure deficit (D), which can be the pivotal one affecting leaf gas exchange in species particularly sensitive to D such as C. avellana. The aim of this work was to evaluate stomatal sensibility to D and to determine correlations with hydraulics characteristics of leaves in three genotypes of C. avellana selected over centuries under different climatic conditions in the Italian peninsula. Among the three varieties Tonda Gentile delle Langhe (TGL), which was the one coming from northern Italy suffered the largest stomatal limitation at increasing levels of D in comparison with the other two cultivars [Tonda Romana (TR) and Tonda di Giffoni (TG), selected in central and southern Italy, respectively]. In all genotypes, photosynthesis decreased at high D although the reduction was mostly due to the rising of the temperature as suggested by the high values of sub-stomatal concentration of CO2. Concerning the hydraulic characteristics of the leaves, TG had considerable higher bulk elasticity compared with other two cultivars. These results contribute to explain the higher adaptability to different environments of TG and TR compared with TGL. Either the lower sensitivity to D of TG and TR and higher schlerophylly of TG might allow these cultivars to suffer less gas exchange limitations in hot and dry environments usually conducive to high D. Genotypic sensitivity to D represent one of the key factors to be considered in phenotyping protocols for D-sensitive species such as hazelnut.


Assuntos
Corylus/fisiologia , Estômatos de Plantas/fisiologia , Adaptação Fisiológica , Clima , Fotossíntese , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Pressão de Vapor
19.
Front Plant Sci ; 9: 1122, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123231

RESUMO

Early leaf removal significantly alters the source-sink balance within grapevine shoots, leading to a reduction in fruit set. However, no research has previously examined the conditions controlling this process in terms of carbon allocation among major sink organs following defoliation. In this study, the impact of defoliation at bloom on the distribution dynamics of leaf assimilates among clusters and growing shoot apices was investigated on Vitis vinifera, cv. Pinot noir, grown in Michigan, a cool climate viticultural region. Three levels of defoliation: no leaves removed (LR-0); six leaves removed from six basal nodes (LR-6); and ten leaves removed from ten basal nodes (LR-10), were imposed at full bloom. A 13C pulsing was performed 1 week after the treatment application to the defoliated shoots. Single leaf gas exchange (Pn), diurnal changes of the leaf net CO2 assimilation rate, carbon distribution, fruit-set, yield, and fruit composition were measured. Higher Pn was recorded in diurnal measurements of gas exchange in leaf removal (LR) treatments compared to LR-0. The shoot apex of LR-10 experienced the highest 13C allocation (%) after 3 and 7 days following the carbon pulsing. LR-10 had lower percentage of 13C allocated to clusters, which decreased fruit set by 60%, compared to the control, and enhanced the concentration of phenolic compounds in fruit. Alteration of carbon portioning among shoot sink organs indicated that an increasing severity of leaf removal significantly reduced fruit set, and was linearly correlated to shoot apex sink strength, which occurred at the expense of the cluster.

20.
Front Plant Sci ; 8: 630, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28512461

RESUMO

Leaf removal is a grapevine canopy management technique widely used to modify the source-sink balance and/or microclimate around berry clusters to optimize fruit composition. In general, the removal of basal leaves before flowering reduces fruit set, hence achieving looser clusters, and improves grape composition since yield is generally curtailed more than proportionally to leaf area itself. Albeit responses to this practice seem quite consistent, overall vine performance is affected by genotype, environmental conditions, and severity of treatment. The physiological responses of grape varieties to defoliation practices have been widely investigated, and just recently a whole genome transcriptomic approach was exploited showing an extensive transcriptome rearrangement in berries defoliated before flowering. Nevertheless, the extent to which these transcriptomic reactions could be manifested by different genotypes and growing environments is entirely unexplored. To highlight general responses to defoliation vs. different locations, we analyzed the transcriptome of cv. Sangiovese berries sampled at four development stages from pre-flowering defoliated vines in two different geographical areas of Italy. We obtained and validated five markers of the early defoliation treatment in Sangiovese, an ATP-binding cassette transporter, an auxin response factor, a cinnamyl alcohol dehydrogenase, a flavonoid 3-O-glucosyltransferase and an indole-3-acetate beta-glucosyltransferase. Candidate molecular markers were also obtained in another three grapevine genotypes (Nero d'Avola, Ortrugo, and Ciliegiolo), subjected to the same level of selective pre-flowering defoliation (PFD) over two consecutive years in their different areas of cultivation. The flavonol synthase was identified as a marker in the pre-veraison phase, the jasmonate methyltransferase during the transition phase and the abscisic acid receptor PYL4 in the ripening phase. The characterization of transcriptome changes in Sangiovese berry after PFD highlights, on one hand, the stronger effect of environment than treatment on the whole berry transcriptome rearrangement during development and, on the other, expands existing knowledge of the main molecular and biochemical modifications occurring in defoliated vines. Moreover, the identification of candidate genes associated with PFD in different genotypes and environments provides new insights into the applicability and repeatability of this crop practice, as well as its possible agricultural and qualitative outcomes across genetic and environmental variability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA