RESUMO
[18F]Flortaucipir is an FDA-approved tau-PET tracer that is increasingly utilized in clinical settings for the diagnosis of Alzheimer's disease. Still, a large-scale comparison of the in vivo PET uptake to quantitative post-mortem tau pathology and to other co-pathologies is lacking. Here, we examined the correlation between in vivo [18F]flortaucipir PET uptake and quantitative post-mortem tau pathology in corresponding brain regions from the AVID A16 end-of-life study (n = 63). All participants underwent [18F]flortaucipir PET scans prior to death, followed by a detailed post-mortem neuropathological examination using AT8 (tau) immunohistochemistry. Correlations between [18F]flortaucipir standardized uptake value ratios (SUVRs) and AT8 immunohistochemistry were assessed across 18 regions-of-interest (ROIs). To assess [18F]flortaucipir specificity and level of detection for tau pathology, correlations between [18F]flortaucipir SUVR and neuritic plaque score and TDP-43 stage were also computed and retention was further assessed in individuals with possible primary age-related tauopathy (PART), defined as Thal phase ≤ 2 and Braak stage I-IV. We found modest-to-strong correlations between in vivo [18F]flortaucipir SUVR and post-mortem tau pathology density in corresponding brain regions in all neocortical regions analyzed (rho-range = 0.61-0.79, p < 0.0001 for all). The detection threshold of [18F]flortaucipir PET was determined to be 0.85% of surface area affected by tau pathology in a temporal meta-ROI, and 0.15% in a larger cortical meta-ROI. No significant associations were found between [18F]flortaucipir SUVRs and post-mortem tau pathology in individuals with possible PART. Further, there was no correlation observed between [18F]flortaucipir and level of amyloid-ß neuritic plaque load (rho-range = - 0.16-0.12; p = 0.48-0.61) or TDP-43 stage (rho-range = - 0.10 to - 0.30; p = 0.18-0.65). In conclusion, our in vivo vs post-mortem study shows that the in vivo [18F]flortaucipir PET signal primarily reflects tau pathology, also at relatively low densities of tau proteinopathy, and does not bind substantially to tau neurites in neuritic plaques or in individuals with PART.
Assuntos
Encéfalo , Carbolinas , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Feminino , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Masculino , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Compostos Radiofarmacêuticos , Radioisótopos de FlúorRESUMO
INTRODUCTION: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis. METHODS: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data. JPM was compared to a linear regression approach analogous to the one used in the amyloid PET Centiloid scale. RESULTS: A strong linear relationship was observed between CTR values across brain regions. Using the JPM approach, CTR estimates were similar to, but more accurate than, those derived using the linear regression approach. DISCUSSION: Preliminary findings using the JPM support the development and adoption of a universal scale for tau-PET quantification. HIGHLIGHTS: Tested a novel joint propagation model (JPM) to harmonize quantification of tau PET. Units of common scale are termed "CenTauRs". Tested a Centiloid-like linear regression approach. Using five cohorts with head-to-head tau PET, JPM outperformed linearregressionbased approach. Strong linear relationship was observed between CenTauRs values across brain regions.
Assuntos
Doença de Alzheimer , Encéfalo , Tomografia por Emissão de Pósitrons , Proteínas tau , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Humanos , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Masculino , Feminino , Idoso , Estudos de Coortes , Compostos Radiofarmacêuticos , Modelos EstatísticosRESUMO
BACKGROUND: Maximizing the efficiency to screen amyloid-positive individuals in asymptomatic and non-demented aged population using blood-based biomarkers is essential for future success of clinical trials in the early stage of Alzheimer's disease (AD). In this study, we elucidate the utility of combination of plasma amyloid-ß (Aß)-related biomarkers and tau phosphorylated at threonine 217 (p-tau217) to predict abnormal Aß-positron emission tomography (PET) in the preclinical and prodromal AD. METHODS: We designed the cross-sectional study including two ethnically distinct cohorts, the Japanese trial-ready cohort for preclinica and prodromal AD (J-TRC) and the Swedish BioFINDER study. J-TRC included 474 non-demented individuals (CDR 0: 331, CDR 0.5: 143). Participants underwent plasma Aß and p-tau217 assessments, and Aß-PET imaging. Findings in J-TRC were replicated in the BioFINDER cohort including 177 participants (cognitively unimpaired: 114, mild cognitive impairment: 63). In both cohorts, plasma Aß(1-42) (Aß42) and Aß(1-40) (Aß40) were measured using immunoprecipitation-MALDI TOF mass spectrometry (Shimadzu), and p-tau217 was measured with an immunoassay on the Meso Scale Discovery platform (Eli Lilly). RESULTS: Aß-PET was abnormal in 81 participants from J-TRC and 71 participants from BioFINDER. Plasma Aß42/Aß40 ratio and p-tau217 individually showed moderate to high accuracies when detecting abnormal Aß-PET scans, which were improved by combining plasma biomarkers and by including age, sex and APOE genotype in the models. In J-TRC, the highest AUCs were observed for the models combining p-tau217/Aß42 ratio, APOE, age, sex in the whole cohort (AUC = 0.936), combining p-tau217, Aß42/Aß40 ratio, APOE, age, sex in the CDR 0 group (AUC = 0.948), and combining p-tau217/Aß42 ratio, APOE, age, sex in the CDR 0.5 group (AUC = 0.955), respectively. Each subgroup results were replicated in BioFINDER, where the highest AUCs were seen for models combining p-tau217, Aß42/40 ratio, APOE, age, sex in cognitively unimpaired (AUC = 0.938), and p-tau217/Aß42 ratio, APOE, age, sex in mild cognitive impairment (AUC = 0.914). CONCLUSIONS: Combination of plasma Aß-related biomarkers and p-tau217 exhibits high performance when predicting Aß-PET positivity. Adding basic clinical information (i.e., age, sex, APOE ε genotype) improved the prediction in preclinical AD, but not in prodromal AD. Combination of Aß-related biomarkers and p-tau217 could be highly useful for pre-screening of participants in clinical trials of preclinical and prodromal AD.
Assuntos
Peptídeos beta-Amiloides , Biomarcadores , Encéfalo , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/metabolismo , Feminino , Masculino , Proteínas tau/sangue , Idoso , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores/sangue , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Idoso de 80 Anos ou mais , Estudos de Coortes , Fosforilação , Pessoa de Meia-Idade , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/diagnóstico , Fragmentos de Peptídeos/sangue , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/diagnósticoRESUMO
Alzheimer's disease is defined by the presence of ß-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
RESUMO
OBJECTIVE: We aimed to test whether region-specific factors, including spatial expression patterns of the tau-encoding gene MAPT and regional levels of amyloid positron emission tomography (PET), enhance connectivity-based modeling of the spatial variability in tau-PET deposition in the Alzheimer disease (AD) spectrum. METHODS: We included 685 participants (395 amyloid-positive participants within AD spectrum and 290 amyloid-negative controls) with tau-PET and amyloid-PET from 3 studies (Alzheimer's Disease Neuroimaging Initiative, 18 F-AV-1451-A05, and BioFINDER-1). Resting-state functional magnetic resonance imaging was obtained in healthy controls (n = 1,000) from the Human Connectome Project, and MAPT gene expression from the Allen Human Brain Atlas. Based on a brain-parcellation atlas superimposed onto all modalities, we obtained region of interest (ROI)-to-ROI functional connectivity, ROI-level PET values, and MAPT gene expression. In stepwise regression analyses, we tested connectivity, MAPT gene expression, and amyloid-PET as predictors of group-averaged and individual tau-PET ROI values in amyloid-positive participants. RESULTS: Connectivity alone explained 21.8 to 39.2% (range across 3 studies) of the variance in tau-PET ROI values averaged across amyloid-positive participants. Stepwise addition of MAPT gene expression and amyloid-PET increased the proportion of explained variance to 30.2 to 46.0% and 45.0 to 49.9%, respectively. Similarly, for the prediction of patient-level tau-PET ROI values, combining all 3 predictors significantly improved the variability explained (mean adjusted R2 range across studies = 0.118-0.148, 0.156-0.196, and 0.251-0.333 for connectivity alone, connectivity plus MAPT expression, and all 3 modalities combined, respectively). INTERPRETATION: Across 3 study samples, combining the functional connectome and molecular properties substantially enhanced the explanatory power compared to single modalities, providing a valuable tool to explain regional susceptibility to tau deposition in AD. ANN NEUROL 2024;95:274-287.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Conectoma , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Imageamento por Ressonância Magnética/métodos , Proteínas tau/genética , Proteínas tau/metabolismo , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Amiloide/metabolismo , Expressão Gênica , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/patologiaRESUMO
Importance: An increased tau positron emission tomography (PET) signal in the medial temporal lobe (MTL) has been observed in older individuals in the absence of amyloid-ß (Aß) pathology. Little is known about the longitudinal course of this condition, and its association with Alzheimer disease (AD) remains unclear. Objective: To study the pathologic and clinical course of older individuals with PET-evidenced MTL tau deposition (TMTL+) in the absence of Aß pathology (A-), and the association of this condition with the AD continuum. Design, Setting, and Participants: A multicentric, observational, longitudinal cohort study was conducted using pooled data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Harvard Aging Brain Study (HABS), and the AVID-A05 study, collected between July 2, 2015, and August 23, 2021. Participants in the ADNI, HABS, and AVID-A05 studies (N = 1093) with varying degrees of cognitive performance were deemed eligible if they had available tau PET, Aß PET, and magnetic resonance imaging scans at baseline. Of these, 128 participants did not meet inclusion criteria based on Aß PET and tau PET biomarker profiles (A+ TMTL-). Exposures: Tau and Aß PET, magnetic resonance imaging, cerebrospinal fluid biomarkers, and cognitive assessments. Main Outcomes and Measures: Cross-sectional and longitudinal measures for tau and Aß PET, cortical atrophy, cognitive scores, and core AD cerebrospinal fluid biomarkers (Aß42/40 and tau phosphorylated at threonine 181 p-tau181 available in a subset). Results: Among the 965 individuals included in the study, 503 were women (52.1%) and the mean (SD) age was 73.9 (8.1) years. A total of 51% of A- individuals and 78% of A+ participants had increased tau PET signal in the entorhinal cortex (TMTL+) compared with healthy younger (aged <39 years) controls. Compared with A- TMTL-, A- TMTL+ participants showed statistically significant, albeit moderate, longitudinal (mean [SD], 1.83 [0.84] years) tau PET increases that were largely limited to the temporal lobe, whereas those with A+ TMTL+ showed faster and more cortically widespread tau PET increases. In contrast to participants with A+ TMTL+, those with A- TMTL+ did not show any noticeable Aß accumulation over follow-up (mean [SD], 2.36 [0.76] years). Complementary cerebrospinal fluid analysis confirmed longitudinal p-tau181 increases in A- TMTL+ in the absence of increased Aß accumulation. Participants with A- TMTL+ had accelerated MTL atrophy, whereas those with A+ TMTL+ showed accelerated atrophy in widespread temporoparietal brain regions. Increased MTL tau PET uptake in A- individuals was associated with cognitive decline, but at a significantly slower rate compared with A+ TMTL+. Conclusions and Relevance: In this study, individuals with A- TMTL+ exhibited progressive tau accumulation and neurodegeneration, but these processes were comparably slow, remained largely restricted to the MTL, were associated with only subtle changes in global cognitive performance, and were not accompanied by detectable accumulation of Aß biomarkers. These data suggest that individuals with A- TMTL+ are not on a pathologic trajectory toward AD.
Assuntos
Doença de Alzheimer , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/líquido cefalorraquidiano , Estudos Longitudinais , Proteínas tau/líquido cefalorraquidiano , Estudos Transversais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano , Progressão da Doença , AtrofiaRESUMO
Importance: Longitudinal tau positron emission tomography (PET) is a relevant outcome in clinical trials evaluating disease-modifying therapies in Alzheimer disease (AD). A key unanswered question is whether the use of participant-specific (individualized) regions of interest (ROIs) is superior to conventional approaches where the same ROI (group-level) is used for each participant. Objective: To compare group- and participant-level ROIs in participants at different stages of the AD clinical continuum in terms of annual percentage change in tau-PET standardized uptake value ratio (SUVR) and sample size requirements. Design, Setting, and Participants: This was a longitudinal cohort study with consecutive participant enrollment between September 18, 2017, and November 15, 2021. Included in the analysis were participants with mild cognitive impairment and AD dementia from the prospective and longitudinal Swedish Biomarkers For Identifying Neurodegenerative Disorders Early and Reliably 2 (BioFINDER-2) study; in addition, a validation sample (the AVID 05e, Expedition-3, Alzheimer's Disease Neuroimaging Initiative [ADNI], and BioFINDER-1 study cohorts) was also included. Exposures: Tau PET (BioFINDER-2, [18F]RO948; validation sample, [18F]flortaucipir), 7 group-level (5 data-driven stages, meta-temporal, whole brain), and 5 individualized ROIs. Main Outcomes and Measures: Annual percentage change in tau-PET SUVR across ROIs. Sample size requirements in simulated clinical trials using tau PET as an outcome were also calculated. Results: A total of 215 participants (mean [SD] age, 71.4 (7.5) years; 111 male [51.6%]) from the BioFINDER-2 study were included in this analysis: 97 amyloid-ß (Aß)-positive cognitively unimpaired (CU) individuals, 77 with Aß-positive mild cognitive impairment (MCI), and 41 with AD dementia. In the validation sample were 137 Aß-positive CU participants, 144 with Aß-positive MCI, and 125 with AD dementia. Mean (SD) follow-up time was 1.8 (0.3) years. Using group-level ROIs, the largest annual percentage increase in tau-PET SUVR in Aß-positive CU individuals was seen in a composite ROI combining the entorhinal cortex, hippocampus, and amygdala (4.29%; 95% CI, 3.42%-5.16%). In individuals with Aß-positive MCI, the greatest change was seen in the temporal cortical regions (5.82%; 95% CI, 4.67%-6.97%), whereas in those with AD dementia, the greatest change was seen in the parietal regions (5.22%; 95% CI, 3.95%-6.49%). Significantly higher estimates of annual percentage change were found using several of the participant-specific ROIs. Importantly, the simplest participant-specific approach, where change in tau PET was calculated in an ROI that best matched the participant's data-driven disease stage, performed best in all 3 subgroups. For the power analysis, sample size reductions for the participant-specific ROIs ranged from 15.94% (95% CI, 8.14%-23.74%) to 72.10% (95% CI, 67.10%-77.20%) compared with the best-performing group-level ROIs. Findings were replicated using [18F]flortaucipir. Conclusions and Relevance: Finding suggest that certain individualized ROIs carry an advantage over group-level ROIs for assessing longitudinal tau changes and increase the power to detect treatment effects in AD clinical trials using longitudinal tau PET as an outcome.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Idoso , Proteínas tau/metabolismo , Estudos Longitudinais , Estudos Prospectivos , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons/métodos , BiomarcadoresRESUMO
PURPOSE: Pittsburgh Compound-B (11C-PiB) and 18F-florbetapir are amyloid-ß (Aß) positron emission tomography (PET) radiotracers that have been used as endpoints in Alzheimer's disease (AD) clinical trials to evaluate the efficacy of anti-Aß monoclonal antibodies. However, comparing drug effects between and within trials may become complicated if different Aß radiotracers were used. To study the consequences of using different Aß radiotracers to measure Aß clearance, we performed a head-to-head comparison of 11C-PiB and 18F-florbetapir in a Phase 2/3 clinical trial of anti-Aß monoclonal antibodies. METHODS: Sixty-six mutation-positive participants enrolled in the gantenerumab and placebo arms of the first Dominantly Inherited Alzheimer Network Trials Unit clinical trial (DIAN-TU-001) underwent both 11C-PiB and 18F-florbetapir PET imaging at baseline and during at least one follow-up visit. For each PET scan, regional standardized uptake value ratios (SUVRs), regional Centiloids, a global cortical SUVR, and a global cortical Centiloid value were calculated. Longitudinal changes in SUVRs and Centiloids were estimated using linear mixed models. Differences in longitudinal change between PET radiotracers and between drug arms were estimated using paired and Welch two sample t-tests, respectively. Simulated clinical trials were conducted to evaluate the consequences of some research sites using 11C-PiB while other sites use 18F-florbetapir for Aß PET imaging. RESULTS: In the placebo arm, the absolute rate of longitudinal change measured by global cortical 11C-PiB SUVRs did not differ from that of global cortical 18F-florbetapir SUVRs. In the gantenerumab arm, global cortical 11C-PiB SUVRs decreased more rapidly than global cortical 18F-florbetapir SUVRs. Drug effects were statistically significant across both Aß radiotracers. In contrast, the rates of longitudinal change measured in global cortical Centiloids did not differ between Aß radiotracers in either the placebo or gantenerumab arms, and drug effects remained statistically significant. Regional analyses largely recapitulated these global cortical analyses. Across simulated clinical trials, type I error was higher in trials where both Aß radiotracers were used versus trials where only one Aß radiotracer was used. Power was lower in trials where 18F-florbetapir was primarily used versus trials where 11C-PiB was primarily used. CONCLUSION: Gantenerumab treatment induces longitudinal changes in Aß PET, and the absolute rates of these longitudinal changes differ significantly between Aß radiotracers. These differences were not seen in the placebo arm, suggesting that Aß-clearing treatments may pose unique challenges when attempting to compare longitudinal results across different Aß radiotracers. Our results suggest converting Aß PET SUVR measurements to Centiloids (both globally and regionally) can harmonize these differences without losing sensitivity to drug effects. Nonetheless, until consensus is achieved on how to harmonize drug effects across radiotracers, and since using multiple radiotracers in the same trial may increase type I error, multisite studies should consider potential variability due to different radiotracers when interpreting Aß PET biomarker data and, if feasible, use a single radiotracer for the best results. TRIAL REGISTRATION: ClinicalTrials.gov NCT01760005. Registered 31 December 2012. Retrospectively registered.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos de Anilina , Etilenoglicóis , Encéfalo/metabolismoRESUMO
Mechanisms of resilience against tau pathology in individuals across the Alzheimer's disease spectrum are insufficiently understood. Longitudinal data are necessary to reveal which factors relate to preserved cognition (i.e. cognitive resilience) and brain structure (i.e. brain resilience) despite abundant tau pathology, and to clarify whether these associations are cross-sectional or longitudinal. We used a longitudinal study design to investigate the role of several demographic, biological and brain structural factors in yielding cognitive and brain resilience to tau pathology as measured with PET. In this multicentre study, we included 366 amyloid-ß-positive individuals with mild cognitive impairment or Alzheimer's disease dementia with baseline 18F-flortaucipir-PET and longitudinal cognitive assessments. A subset (n = 200) additionally underwent longitudinal structural MRI. We used linear mixed-effects models with global cognition and cortical thickness as dependent variables to investigate determinants of cognitive resilience and brain resilience, respectively. Models assessed whether age, sex, years of education, APOE-ε4 status, intracranial volume (and cortical thickness for cognitive resilience models) modified the association of tau pathology with cognitive decline or cortical thinning. We found that the association between higher baseline tau-PET levels (quantified in a temporal meta-region of interest) and rate of cognitive decline (measured with repeated Mini-Mental State Examination) was adversely modified by older age (Stßinteraction = -0.062, P = 0.032), higher education level (Stßinteraction = -0.072, P = 0.011) and higher intracranial volume (Stßinteraction = -0.07, P = 0.016). Younger age, higher education and greater cortical thickness were associated with better cognitive performance at baseline. Greater cortical thickness was furthermore associated with slower cognitive decline independent of tau burden. Higher education also modified the negative impact of tau-PET on cortical thinning, while older age was associated with higher baseline cortical thickness and slower rate of cortical thinning independent of tau. Our analyses revealed no (cross-sectional or longitudinal) associations for sex and APOE-ε4 status on cognition and cortical thickness. In this longitudinal study of clinically impaired individuals with underlying Alzheimer's disease neuropathological changes, we identified education as the most robust determinant of both cognitive and brain resilience against tau pathology. The observed interaction with tau burden on cognitive decline suggests that education may be protective against cognitive decline and brain atrophy at lower levels of tau pathology, with a potential depletion of resilience resources with advancing pathology. Finally, we did not find major contributions of sex to brain nor cognitive resilience, suggesting that previous links between sex and resilience might be mainly driven by cross-sectional differences.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Estudos Longitudinais , Proteínas tau/metabolismo , Estudos Transversais , Afinamento Cortical Cerebral/patologia , Tomografia por Emissão de Pósitrons , Encéfalo/patologia , Cognição , Apolipoproteínas ERESUMO
BACKGROUND: There is an increasing interest in utilizing tau PET to identify patients early in Alzheimer's disease (AD). In this work, a temporal lobe composite (Eτ) volume of interest (VOI) was evaluated in a longitudinal flortaucipir cohort and compared to a previously described global neocortical VOI. In a separate autopsy-confirmed study, the sensitivity of the Eτ VOI for identifying intermediate (B2) neurofibrillary tangle (NFT) pathology was evaluated. METHODS: A total of 427 subjects received flortaucipir, florbetapir, MRI, and cognitive evaluation at baseline and 18 months. In a separate autopsy study, 67 subjects received ante-mortem flortaucipir scans, and neuropathological findings were recorded according to NIA-AA recommendations by two experts. Two VOIs: Eτ comprising FreeSurfer volumes (bilateral entorhinal cortex, fusiform, parahippocampal, and inferior temporal gyri) transformed to MNI space and a previously published global AD signature-weighted neocortical VOI (ADsignature) (Devous et al., J Nucl Med 59:937-43, 2018), were used to calculate SUVr relative to a white matter reference region (PERSI) (Southekal et al., J Nucl Med Off Publ Soc Nucl Med 59:944-51, 2018). SUVr cutoffs for positivity were determined based on a cohort of young, cognitively normal subjects. Subjects were grouped based on positivity on both VOIs (Eτ+/ADsignature+; Eτ+/ADsignature-; Eτ-/ADsignature-). Groupwise comparisons were performed for baseline SUVr, 18-month changes in SUVr, neurodegeneration, and cognition. For the autopsy study, the sensitivity of Eτ in identifying intermediate Braak pathology (B2) subjects was compared to that of AD signature-weighted neocortical VOI. The average surface maps of subjects in the Eτ+/ADsignature- group and B2 NFT scores were created for visual evaluation of uptake. RESULTS: Sixty-four out of 390 analyzable subjects were identified as Eτ+/ADsignature-: 84% were Aß+, 100% were diagnosed as MCI or AD, and 59% were APOE ε4 carriers. Consistent with the hypothesis that Eτ+/ADsignature- status reflects an early stage of AD, Eτ+/ADsignature- subjects deteriorated significantly faster than Eτ-/ADsignature- subjects, but significantly slower than Eτ+/ADsignature+ subjects, on most measures (i.e., change in ADsignature SUVr, Eτ ROI cortical thickness, and MMSE). The ADsignature VOI was selective for subjects who came to autopsy with a B3 NFT score. In the autopsy study, 12/15 B2 subjects (including 10/11 Braak IV) were Eτ+/ADsignature-. Surface maps showed that flortaucipir uptake was largely captured by the Eτ VOI regions in B2 subjects. CONCLUSION: The Eτ VOI identified subjects with elevated temporal but not global tau (Eτ+/ADsignature-) that were primarily Aß+, APOE ε4 carriers, and diagnosed as MCI or AD. Eτ+/ADsignature- subjects had greater accumulation of tau, greater atrophy, and higher decline on MMSE in 18 months compared to Eτ-/ADsignature- subjects. Finally, the Eτ VOI identified the majority of the intermediate NFT score subjects in an autopsy-confirmed study. As far as we know, this is the first study that presents a visualization of ante-mortem FTP retention patterns that at a group level agree with the neurofibrillary tangle staging scheme proposed by Braak. These findings suggest that the Eτ VOI may be sensitive for detecting impaired subjects early in the course of Alzheimer's disease.
Assuntos
Doença de Alzheimer , Humanos , Autopsia , Doença de Alzheimer/diagnóstico por imagem , Apolipoproteína E4 , Progressão da DoençaRESUMO
Plasma phospho-tau (p-tau) species have emerged as the most promising blood-based biomarkers of Alzheimer's disease. Here, we performed a head-to-head comparison of p-tau181, p-tau217 and p-tau231 measured using 10 assays to detect abnormal brain amyloid-ß (Aß) status and predict future progression to Alzheimer's dementia. The study included 135 patients with baseline diagnosis of mild cognitive impairment (mean age 72.4 years; 60.7% women) who were followed for an average of 4.9 years. Seventy-one participants had abnormal Aß-status (i.e. abnormal CSF Aß42/40) at baseline; and 45 of these Aß-positive participants progressed to Alzheimer's dementia during follow-up. P-tau concentrations were determined in baseline plasma and CSF. P-tau217 and p-tau181 were both measured using immunoassays developed by Lilly Research Laboratories (Lilly) and mass spectrometry assays developed at Washington University (WashU). P-tau217 was also analysed using Simoa immunoassay developed by Janssen Research and Development (Janss). P-tau181 was measured using Simoa immunoassay from ADxNeurosciences (ADx), Lumipulse immunoassay from Fujirebio (Fuji) and Splex immunoassay from Mesoscale Discovery (Splex). Both p-tau181 and p-tau231 were quantified using Simoa immunoassay developed at the University of Gothenburg (UGOT). We found that the mass spectrometry-based p-tau217 (p-tau217WashU) exhibited significantly better performance than all other plasma p-tau biomarkers when detecting abnormal Aß status [area under curve (AUC) = 0.947; Pdiff < 0.015] or progression to Alzheimer's dementia (AUC = 0.932; Pdiff < 0.027). Among immunoassays, p-tau217Lilly had the highest AUCs (0.886-0.889), which was not significantly different from the AUCs of p-tau217Janss, p-tau181ADx and p-tau181WashU (AUCrange 0.835-0.872; Pdiff > 0.09), but higher compared with AUC of p-tau231UGOT, p-tau181Lilly, p-tau181UGOT, p-tau181Fuji and p-tau181Splex (AUCrange 0.642-0.813; Pdiff ≤ 0.029). Correlations between plasma and CSF values were strongest for p-tau217WashU (R = 0.891) followed by p-tau217Lilly (R = 0.755; Pdiff = 0.003 versus p-tau217WashU) and weak to moderate for the rest of the p-tau biomarkers (Rrange 0.320-0.669). In conclusion, our findings suggest that among all tested plasma p-tau assays, mass spectrometry-based measures of p-tau217 perform best when identifying mild cognitive impairment patients with abnormal brain Aß or those who will subsequently progress to Alzheimer's dementia. Several other assays (p-tau217Lilly, p-tau217Janss, p-tau181ADx and p-tau181WashU) showed relatively high and consistent accuracy across both outcomes. The results further indicate that the highest performing assays have performance metrics that rival the gold standards of Aß-PET and CSF. If further validated, our findings will have significant impacts in diagnosis, screening and treatment for Alzheimer's dementia in the future.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/diagnóstico , Proteínas tau , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico , Encéfalo , BiomarcadoresRESUMO
Importance: Plasma biomarkers of Alzheimer disease may be useful as minimally invasive pharmacodynamic measures of treatment outcomes. Objective: To analyze the association of donanemab treatment with plasma biomarkers associated with Alzheimer disease. Design, Setting, and Participants: TRAILBLAZER-ALZ was a randomized, double-blind, placebo-controlled clinical trial conducted from December 18, 2017, to December 4, 2020, across 56 sites in the US and Canada. Exploratory biomarkers were prespecified with the post hoc addition of plasma glial fibrillary acidic protein and amyloid-ß. Men and women aged 60 to 85 years with gradual and progressive change in memory function for at least 6 months were included. A total of 1955 participants were assessed for eligibility. Key eligibility criteria include Mini-Mental State Examination scores of 20 to 28 and elevated amyloid and intermediate tau levels. Interventions: Randomized participants received donanemab or placebo every 4 weeks for up to 72 weeks. The first 3 doses of donanemab were given at 700 mg and then increased to 1400 mg with blinded dose reductions as specified based on amyloid reduction. Main Outcomes and Measures: Change in plasma biomarker levels after donanemab treatment. Results: In TRAILBLAZER-ALZ, 272 participants (mean [SD] age, 75.2 [5.5] years; 145 [53.3%] female) were randomized. Plasma levels of phosphorylated tau217 (pTau217) and glial fibrillary acidic protein were significantly lower with donanemab treatment compared with placebo as early as 12 weeks after the start of treatment (least square mean change difference vs placebo, -0.04 [95% CI, -0.07 to -0.02]; P = .002 and -0.04 [95% CI, -0.07 to -0.01]; P = .01, respectively). No significant differences in plasma levels of amyloid-ß 42/40 and neurofilament light chain were observed between treatment arms at the end of treatment. Changes in plasma pTau217 and glial fibrillary acidic protein were significantly correlated with the Centiloid percent change in amyloid (Spearman rank correlation coefficient [R] = 0.484 [95% CI, 0.359-0.592]; P < .001 and R = 0.453 [95% CI, 0.306-0.579]; P < .001, respectively) following treatment. Additionally, plasma levels of pTau217 and glial fibrillary acidic protein were significantly correlated at baseline and following treatment (R = 0.399 [95% CI, 0.278-0.508], P < .001 and R = 0.393 [95% CI, 0.254-0.517]; P < .001, respectively). Conclusions and Relevance: Significant reductions in plasma biomarkers pTau217 and glial fibrillary acidic protein compared with placebo were observed following donanemab treatment in patients with early symptomatic Alzheimer disease. These easily accessible plasma biomarkers might provide additional evidence of Alzheimer disease pathology change through anti-amyloid therapy. Usefulness in assessing treatment response will require further evaluation. Trial Registration: ClinicalTrials.gov Identifier: NCT03367403.
Assuntos
Doença de Alzheimer , Masculino , Feminino , Humanos , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/diagnóstico , Proteína Glial Fibrilar Ácida , Peptídeos beta-Amiloides , Biomarcadores , Plasma , Método Duplo-Cego , Anticorpos Monoclonais/uso terapêuticoRESUMO
Importance: ß-amyloid plaques and neurofibrillary tau deposits biologically define Alzheimer disease. Objective: To perform post hoc analyses of amyloid reduction after donanemab treatment and assess its association with tau pathology and clinical measures. Design, Setting, and Participants: The Study of LY3002813 in Participants With Early Symptomatic Alzheimer's Disease (TRAILBLAZER-ALZ) was a phase 2, placebo-controlled, randomized clinical trial conducted from December 18, 2017, to December 4, 2020, with a double-blind period of up to 76 weeks and a 48-week follow-up period. The study was conducted at 56 centers in the US and Canada. Enrolled were participants from 60 to 85 years of age with gradual and progressive change in memory function for 6 months or more, early symptomatic Alzheimer disease, elevated amyloid, and intermediate tau levels. Interventions: Donanemab (an antibody specific for the N-terminal pyroglutamate ß-amyloid epitope) dosing was every 4 weeks: 700 mg for the first 3 doses, then 1400 mg for up to 72 weeks. Blinded dose-reduction evaluations occurred at 24 and 52 weeks based on amyloid clearance. Main Outcomes and Measures: Change in amyloid, tau, and clinical decline after donanemab treatment. Results: The primary study randomized 272 participants (mean [SD] age, 75.2 [5.5] years; 145 female participants [53.3%]). The trial excluded 1683 of 1955 individuals screened. The rate of donanemab-induced amyloid reduction at 24 weeks was moderately correlated with the amount of baseline amyloid (Spearman correlation coefficient r, -0.54; 95% CI, -0.66 to -0.39; P < .001). Modeling provides a hypothesis that amyloid would not reaccumulate to the 24.1-centiloid threshold for 3.9 years (95% prediction interval, 1.9-8.3 years) after discontinuing donanemab treatment. Donanemab slowed tau accumulation in a region-dependent manner as measured using neocortical and regional standardized uptake value ratios with cerebellar gray reference region. A disease-progression model found a significant association between percentage amyloid reduction and change on the integrated Alzheimer Disease Rating Scale only in apolipoprotein E (APOE) ε4 carriers (95% CI, 24%-59%; P < .001). Conclusions and Relevance: Results of post hoc analyses for donanemab-treated participants suggest that baseline amyloid levels were directly associated with the magnitude of amyloid reduction and inversely associated with the probability of achieving complete amyloid clearance. The donanemab-induced slowing of tau was more pronounced in those with complete amyloid clearance and in brain regions identified later in the pathologic sequence. Data from other trials will be important to confirm aforementioned observations, particularly treatment response by APOE ε4 status. Trial Registration: ClinicalTrials.gov Identifier: NCT03367403.
Assuntos
Doença de Alzheimer , Amiloidose , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides , Apolipoproteína E4 , Epitopos/uso terapêutico , Feminino , Humanos , Lactente , Placa Amiloide/tratamento farmacológico , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons , Ácido Pirrolidonocarboxílico/uso terapêutico , Proteínas tauRESUMO
BACKGROUND: Recent advances in disease-modifying treatments highlight the need for accurately identifying individuals in early Alzheimer's disease (AD) stages and for monitoring of treatment effects. Plasma measurements of phosphorylated tau (p-tau) are a promising biomarker for AD, but different assays show varying diagnostic and prognostic accuracies. The objective of this study was to determine the clinical performance of a novel plasma p-tau217 (p-tau217) assay, p-tau217+Janssen, and perform a head-to-head comparison to an established assay, plasma p-tau217Lilly, within two independent cohorts. METHODS: The study consisted of two cohorts, cohort 1 (27 controls and 25 individuals with mild-cognitive impairment [MCI]) and cohort 2 including 147 individuals with MCI at baseline who were followed for an average of 4.92 (SD 2.09) years. Receiver operating characteristic analyses were used to assess the performance of both assays to detect amyloid-ß status (+/-) in CSF, distinguish MCI from controls, and identify subjects who will convert from MCI to AD dementia. General linear and linear mixed-effects analyses were used to assess the associations between p-tau and baseline, and annual change in Mini-Mental State Examination (MMSE) scores. Spearman correlations were used to assess the associations between the two plasma measures, and Bland-Altmann plots were examined to assess the agreement between the assays. RESULTS: Both assays showed similar performance in detecting amyloid-ß status in CSF (plasma p-tau217+Janssen AUC = 0.91 vs plasma p-tau217Lilly AUC = 0.89), distinguishing MCI from controls (plasma p-tau217+Janssen AUC = 0.91 vs plasma p-tau217Lilly AUC = 0.91), and predicting future conversion from MCI to AD dementia (plasma p-tau217+Janssen AUC = 0.88 vs p-tau217Lilly AUC = 0.89). Both assays were similarly related to baseline (plasma p-tau217+Janssen rho = -0.39 vs p-tau217Lilly rho = -0.35), and annual change in MMSE scores (plasma p-tau217+Janssenr = -0.45 vs p-tau217Lillyr = -0.41). Correlations between the two plasma measures were rho = 0.69, p < 0.001 in cohort 1 and rho = 0.70, p < 0.001 in cohort 2. Bland-Altmann plots revealed good agreement between plasma p-tau217+Janssen and plasma p-tau217Lilly in both cohorts (cohort 1, 51/52 [98%] within 95%CI; cohort 2, 139/147 [95%] within 95%CI). CONCLUSIONS: Taken together, our results indicate good diagnostic and prognostic performance of the plasma p-tau217+Janssen assay, similar to the p-tau217Lilly assay.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva/psicologia , Progressão da Doença , Humanos , Prognóstico , Proteínas tauRESUMO
PURPOSE: [18F]-labeled positron emission tomography (PET) radioligands permit in vivo assessment of Alzheimer's disease biomarkers, including aggregated neurofibrillary tau (NFT) with [18F]flortaucipir. Due to structural similarities of flortaucipir with some monoamine oxidase A (MAO-A) inhibitors, this study aimed to evaluate flortaucipir binding to MAO-A and MAO-B and any potential impact on PET interpretation. METHODS: [18F]Flortaucipir autoradiography was performed on frozen human brain tissue slices, and PET imaging was conducted in rats. Dissociation constants were determined by saturation binding, association and dissociation rates were measured by kinetic binding experiments, and IC50 values were determined by competition binding. RESULTS: Under stringent wash conditions, specific [18F]flortaucipir binding was observed on tau NFT-rich Alzheimer's disease tissue and not control tissue. In vivo PET experiments in rats revealed no evidence of [18F]flortaucipir binding to MAO-A; pre-treatment with MAO inhibitor pargyline did not impact uptake or wash-out of [18F]flortaucipir. [18F]Flortaucipir bound with low nanomolar affinity to human MAO-A in a microsomal preparation in vitro but with a fast dissociation rate relative to MAO-A ligand fluoroethyl-harmol, consistent with no observed in vivo binding in rats of [18F]flortaucipir to MAO-A. Direct binding of flortaucipir to human MAO-B was not detected in a microsomal preparation. A high concentration of flortaucipir (IC50 of 1.3 µM) was found to block binding of the MAO-B ligand safinamide to MAO-B on microsomes suggesting that, at micromolar concentrations, flortaucipir weakly binds to MAO-B in vitro. CONCLUSION: These data suggest neither MAO-A nor MAO-B binding will contribute significantly to the PET signal in cortical target areas relevant to the interpretation of [18F]flortaucipir.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Carbolinas , Humanos , Ligantes , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Ratos , Proteínas tau/metabolismoRESUMO
The spread of neurofibrillary tau pathology in Alzheimer disease (AD) mostly follows a stereotypical pattern of topographical progression but atypical patterns associated with interhemispheric asymmetry have been described. Because histopathological studies that used bilateral sampling are limited, this study aimed to assess interhemispheric tau pathology differences and the presence of topographically atypical cortical spreading patterns. Immunohistochemical staining for detection of tau pathology was performed in 23 regions of interest in 57 autopsy cases comparing bilateral cortical regions and hemispheres. Frequent mild (82% of cases) and occasional moderate (32%) interhemispheric density discrepancies were observed, whereas marked discrepancies were uncommon (7%) and restricted to occipital regions. Left and right hemispheric tau pathology dominance was observed with similar frequencies, except in Braak Stage VI that favored a left dominance. Interhemispheric Braak stage differences were observed in 16% of cases and were more frequent in advanced (IV-VI) versus early (I-III) stages. One atypical lobar topographical pattern in which occipital tau pathology density exceeded frontal lobe scores was identified in 4 cases favoring a left dominant asymmetry. We speculate that asymmetry and atypical topographical progression patterns may be associated with atypical AD clinical presentations and progression characteristics, which should be tested by comprehensive clinicopathological correlations.
Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/patologia , Humanos , Emaranhados Neurofibrilares/patologia , Tomografia por Emissão de Pósitrons , Tauopatias/patologia , Proteínas tauRESUMO
Importance: Tau positron emission tomography (PET) tracers have proven useful for the differential diagnosis of dementia, but their utility for predicting cognitive change is unclear. Objective: To examine the prognostic accuracy of baseline fluorine 18 (18F)-flortaucipir and [18F]RO948 (tau) PET in individuals across the Alzheimer disease (AD) clinical spectrum and to perform a head-to-head comparison against established magnetic resonance imaging (MRI) and amyloid PET markers. Design, Setting, and Participants: This prognostic study collected data from 8 cohorts in South Korea, Sweden, and the US from June 1, 2014, to February 28, 2021, with a mean (SD) follow-up of 1.9 (0.8) years. A total of 1431 participants were recruited from memory clinics, clinical trials, or cohort studies; 673 were cognitively unimpaired (CU group; 253 [37.6%] positive for amyloid-ß [Aß]), 443 had mild cognitive impairment (MCI group; 271 [61.2%] positive for Aß), and 315 had a clinical diagnosis of AD dementia (315 [100%] positive for Aß). Exposures: [18F]Flortaucipir PET in the discovery cohort (n = 1135) or [18F]RO948 PET in the replication cohort (n = 296), T1-weighted MRI (n = 1431), and amyloid PET (n = 1329) at baseline and repeated Mini-Mental State Examination (MMSE) evaluation. Main Outcomes and Measures: Baseline [18F]flortaucipir/[18F]RO948 PET retention within a temporal region of interest, MRI-based AD-signature cortical thickness, and amyloid PET Centiloids were used to predict changes in MMSE using linear mixed-effects models adjusted for age, sex, education, and cohort. Mediation/interaction analyses tested whether associations between baseline tau PET and cognitive change were mediated by baseline MRI measures and whether age, sex, and APOE genotype modified these associations. Results: Among 1431 participants, the mean (SD) age was 71.2 (8.8) years; 751 (52.5%) were male. Findings for [18F]flortaucipir PET predicted longitudinal changes in MMSE, and effect sizes were stronger than for AD-signature cortical thickness and amyloid PET across all participants (R2, 0.35 [tau PET] vs 0.24 [MRI] vs 0.17 [amyloid PET]; P < .001, bootstrapped for difference) in the Aß-positive MCI group (R2, 0.25 [tau PET] vs 0.15 [MRI] vs 0.07 [amyloid PET]; P < .001, bootstrapped for difference) and in the Aß-positive CU group (R2, 0.16 [tau PET] vs 0.08 [MRI] vs 0.08 [amyloid PET]; P < .001, bootstrapped for difference). These findings were replicated in the [18F]RO948 PET cohort. MRI mediated the association between [18F]flortaucipir PET and MMSE in the groups with AD dementia (33.4% [95% CI, 15.5%-60.0%] of the total effect) and Aß-positive MCI (13.6% [95% CI, 0.0%-28.0%] of the total effect), but not the Aß-positive CU group (3.7% [95% CI, -17.5% to 39.0%]; P = .71). Age (t = -2.28; P = .02), but not sex (t = 0.92; P = .36) or APOE genotype (t = 1.06; P = .29) modified the association between baseline [18F]flortaucipir PET and cognitive change, such that older individuals showed faster cognitive decline at similar tau PET levels. Conclusions and Relevance: The findings of this prognostic study suggest that tau PET is a promising tool for predicting cognitive change that is superior to amyloid PET and MRI and may support the prognostic process in preclinical and prodromal stages of AD.
Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/análise , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Sintomas Prodrômicos , Proteínas tau/análise , Idoso , Apolipoproteínas E/genética , Carbolinas , Córtex Cerebral/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Neuroimagem , Valor Preditivo dos Testes , Prognóstico , Compostos Radiofarmacêuticos , Resultado do TratamentoRESUMO
Alzheimer's disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These 'subtypes' were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of 'typical AD' and a revisiting of tau pathological staging.
Assuntos
Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Disfunção Cognitiva/patologia , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/classificação , Carbolinas/farmacologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Neuroimagem/métodos , Fenótipo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Análise Espaço-TemporalRESUMO
BACKGROUND: Imaging biomarkers have the potential to distinguish between different brain pathologies based on the type of ligand used with PET. AV-45 PET (florbetapir, Amyvid™) is selective for the neuritic plaque amyloid of Alzheimer's disease (AD), while AV-133 PET (florbenazine) is selective for VMAT2, which is a dopaminergic marker. OBJECTIVE: To report the clinical, AV-133 PET, AV-45 PET, and neuropathological findings of three clinically diagnosed dementia patients who were part of the Avid Radiopharmaceuticals AV133-B03 study as well as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). METHODS: Three subjects who had PET imaging with both AV-133 and AV-45 as well as a standardized neuropathological assessment were included. The final clinical, PET scan, and neuropathological diagnoses were compared. RESULTS: The clinical and neuropathological diagnoses were made blinded to PET scan results. The first subject had a clinical diagnosis of dementia with Lewy bodies (DLB); AV-133 PET showed bilateral striatal dopaminergic degeneration, and AV-45 PET was positive for amyloid. The final clinicopathological diagnosis was DLB and AD. The second subject was diagnosed clinically with probable AD; AV-45 PET was positive for amyloid, while striatal AV-133 PET was normal. The final clinicopathological diagnosis was DLB and AD. The third subject had a clinical diagnosis of DLB. Her AV-45 PET was positive for amyloid and striatal AV-133 showed dopaminergic degeneration. The final clinicopathological diagnosis was multiple system atrophy and AD. CONCLUSION: PET imaging using AV-133 for the assessment of striatal VMAT2 density may help distinguish between AD and DLB. However, some cases of DLB with less-pronounced nigrostriatal dopaminergic neuronal loss may be missed.