Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273850

RESUMO

Abscisic acid (ABA) and gibberellic acid (GA3) are regulators of fruit color and sugar levels, and the application of these hormones is a common practice in commercial vineyards dedicated to the production of table grapes. However, the effects of exogenous ABA and GA3 on wine cultivars remain unclear. We investigated the impact of ABA and GA3 application on Malbec grapevine berries across three developmental stages. We found similar patterns of berry total anthocyanin accumulation induced by both treatments, closely associated with berry H2O2 levels. Quantitative proteomics from berry skins revealed that ABA and GA3 positively modulated antioxidant defense proteins, mitigating H2O2. Consequently, proteins involved in phenylpropanoid biosynthesis were downregulated, leading to decreased anthocyanin content at the almost ripe stage, particularly petunidin-3-G and peonidin-3-G. Additionally, we noted increased levels of the non-anthocyanins E-viniferin and quercetin in the treated berries, which may enhance H2O2 scavenging at the almost ripe stage. Using a linear mixed-effects model, we found statistical significance for fixed effects including the berry H2O2 and sugar contents, demonstrating their roles in anthocyanin accumulation. In conclusion, our findings suggest a common molecular mechanism by which ABA and GA3 influence berry H2O2 content, ultimately impacting anthocyanin dynamics during ripening.

2.
Physiol Plant ; 174(4): e13742, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35770943

RESUMO

Salinity is one of the principal abiotic stresses that limit the growth and productivity of crops. The use of halotolerant plant growth-promoting rhizobacteria (PGPR) that increase the growth of salt-stressed crops is an environmentally friendly alternative to promote plant yield under salinity. The aim of this study was to test native PGPR, isolated according to their tolerance to NaCl, and to evaluate their influence on morphological, physiological, and biochemical traits promoted by salt stress in tomato plants. Enterobacter 64S1 and Pseudomonas 42P4 were selected as the most efficient strains in terms of salt tolerance. Both strains were classified as moderately resistant to salinity (NaCl) and maintained their plant growth-promoting activities, such as nitrogen fixation and phosphate solubilization, even in the presence of high levels of salt. The results of a greenhouse experiment demonstrated that PGPR inoculation increased root and shoot dry weight, stem diameter, plant height, and leaf area compared to control noninoculated plants under nonsaline stress conditions, reversing the effects of salinity. Inoculated plants showed increased tolerance to salt conditions by reducing electrolyte leakage (improved membrane stability) and lipid peroxidation and increasing chlorophyll quantum efficiency (Fv/Fm) and the performance index. Also, inoculation increased the accumulation of proline and antioxidant nonenzymatic compounds, such as carotenes and total phenolic compounds. The catalase and peroxidase activities increased with salinity, but the effect was reversed by Enterobacter 64S1. In conclusion, Enterobacter 64S1 and Pseudomonas 42P4 isolated from salt-affected regions have the potential to alleviate the deleterious effects of salt stress in tomato crops.


Assuntos
Solanum lycopersicum , Enterobacter , Raízes de Plantas , Pseudomonas , Cloreto de Sódio/farmacologia
3.
Phytochemistry ; 135: 34-52, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27998613

RESUMO

Plants are able to synthesize a large number of organic compounds. Among them, primary metabolites are known to participate in plant growth and development, whereas secondary metabolites are mostly involved in defense and other facultative processes. In grapevine, one of the major fruit crops in the world, secondary metabolites, mainly polyphenols, are of great interest for the wine industry. Even though there is an extensive literature on the content and profile of those compounds in berries, scarce or no information is available regarding polyphenols in other organs. In addition, little is known about the effect of plant growth regulators (PGRs), ABA and GA3 (extensively used in table grapes) on the synthesis of primary and secondary metabolites in wine grapes. In table grapes, cultural practices include the use of GA3 sprays shortly before veraison, to increase berry and bunch size, and sugar content in fruits. Meanwhile, ABA applications to the berries on pre-veraison improve the skin coloring and sugar accumulation, anticipating the onset of veraison. Accordingly, the aim of this study was to assess and characterize primary and secondary metabolites in leaves, berries and roots of grapevine plants cv. Malbec at veraison, and changes in compositions after ABA and GA3 aerial sprayings. Metabolic profiling was conducted using GC-MS, GC-FID and HPLC-MWD. A large set of metabolites was identified: sugars, alditols, organic acids, amino acids, polyphenols (flavonoids and non-flavonoids) and terpenes (mono-, sesqui-, di- and triterpenes). The obtained results showed that ABA applications elicited synthesis of mono- and sesquiterpenes in all assessed tissues, as well as L-proline, acidic amino acids and anthocyanins in leaves. Additionally, applications with GA3 elicited synthesis of L-proline in berries, and mono- and sesquiterpenes in all the tissues. However, treatment with GA3 seemed to block polyphenol synthesis, mainly in berries. In conclusion, ABA and GA3 applications to grapevine plants cv. Malbec influenced the synthesis of primary and secondary metabolites known to be essential for coping with biotic and abiotic stresses.


Assuntos
Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/química , Antocianinas/metabolismo , Flavonoides/análise , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Giberelinas/química , Estrutura Molecular , Folhas de Planta/metabolismo , Polifenóis/análise , Prolina/metabolismo , Vitis/metabolismo
4.
Physiol Plant ; 156(3): 323-37, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26411544

RESUMO

Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot-grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre-veraison, full veraison and post-veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA-treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build-up of non-structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters.


Assuntos
Ácido Abscísico/farmacologia , Carboidratos/química , Carbono/metabolismo , Giberelinas/farmacologia , Floema/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Vitis/metabolismo , Biomassa , Frutas/efeitos dos fármacos , Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Floema/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Amido/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vitis/efeitos dos fármacos , Vitis/genética , Xilema/efeitos dos fármacos , Xilema/metabolismo
5.
Phytochemistry ; 115: 152-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25819001

RESUMO

This study investigated terpene biosynthesis in different tissues (root, protobulb, leaf sheath and blade) of in vitro-grown garlic plants either infected or not (control) with Sclerotium cepivorum, the causative agent of Allium White Rot disease. The terpenes identified by gas chromatography-electron impact mass spectrometry (GC-EIMS) in infected plants were nerolidol, phytol, squalene, α-pinene, terpinolene, limonene, 1,8-cineole and γ-terpinene, whose levels significantly increased when exposed to the fungus. Consistent with this, an increase in terpene synthase (TPS) activity was measured in infected plants. Among the terpenes identified, nerolidol, α-pinene and terpinolene were the most abundant with antifungal activity against S. cepivorum being assessed in vitro by mycelium growth inhibition. Nerolidol and terpinolene significantly reduced sclerotia production, while α-pinene stimulated it in a concentration-dependent manner. Parallel to fungal growth inhibition, electron microscopy observations established morphological alterations in the hyphae exposed to terpinolene and nerolidol. Differences in hyphal EtBr uptake suggested that one of the antifungal mechanisms of nerolidol and terpinolene might be disruption of fungal membrane integrity.


Assuntos
Antifúngicos/análise , Basidiomycota/patogenicidade , Alho/química , Antifúngicos/química , Ascomicetos , Basidiomycota/efeitos dos fármacos , Monoterpenos Bicíclicos , Monoterpenos Cicloexânicos , Cicloexanóis , Cicloexenos , Eucaliptol , Cromatografia Gasosa-Espectrometria de Massas , Limoneno , Monoterpenos , Folhas de Planta/química , Raízes de Plantas/química , Sesquiterpenos , Terpenos
6.
Physiol Plant ; 153(1): 79-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24796562

RESUMO

Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/microbiologia , Azospirillum brasilense/fisiologia , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/análise , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomassa , Clorofila/metabolismo , Secas , Flores/genética , Flores/microbiologia , Flores/fisiologia , Peroxidação de Lipídeos , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/análise , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Prolina/metabolismo , Plântula/genética , Plântula/microbiologia , Plântula/fisiologia , Sementes/genética , Sementes/microbiologia , Sementes/fisiologia , Água/fisiologia
7.
Phytochemistry ; 96: 148-57, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075072

RESUMO

Ultraviolet-B solar radiation (UV-B) is an environmental signal with biological effects in plant tissues. Recent investigations have assigned a protective role of volatile organic compounds (VOCs) in plant tissues submitted to biotic and abiotic stresses. This study investigated VOCs in berries at three developmental stages (veraison, pre-harvest and harvest) of Vitis vinifera L. cv. Malbec exposed (or not) to UV-B both, in in vitro and field experiments. By Head Space-Solid Phase Micro Extraction-Gas Chromatography-Electron Impact Mass Spectrometry (HS-SPME-GC-EIMS) analysis, 10 VOCs were identified at all developmental stages: four monoterpenes, three aldehydes, two alcohols and one ketone. Monoterpenes increased at pre-harvest and in response to UV-B in both, in vitro and field conditions. UV-B also augmented levels of some aldehydes, alcohols and ketones. These results along with others from the literature suggest that UV-B induce grape berries to produce VOCs (mainly monoterpenes) that protect the tissues from UV-B itself and other abiotic and biotic stresses, and could affect the wine flavor. Higher emission of monoterpenes was observed in the field experiments as compared in vitro, suggesting the UV-B/PAR ratio is not a signal in itself.


Assuntos
Monoterpenos/análise , Raios Ultravioleta , Vitis/química , Vitis/efeitos da radiação , Compostos Orgânicos Voláteis/análise , Álcoois/análise , Álcoois/efeitos da radiação , Aldeídos/análise , Aldeídos/efeitos da radiação , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Cetonas/análise , Cetonas/efeitos da radiação , Estrutura Molecular , Monoterpenos/efeitos da radiação , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
8.
Phytochemistry ; 77: 89-98, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22277733

RESUMO

This study investigated the terpene profiles as determined by GC-EIMS analysis of in vitro cultured plants of Vitis vinifera exposed to a "field-like" dose of UV-B (4.75 kJ m(-2)d(-1)) administered at two different fluence rates (low, 16 h at 8.25 µW cm(-2), and high 4 h at 33 µW cm(-2)). Low UV-B treatment increased levels of the membrane-related triterpenes sitosterol, stigmasterol and lupeol, more notable in young leaves, suggesting elicitation of a mechanism for grapevine acclimation. By contrast, accumulation of compounds with antioxidant properties, diterpenes α and γ tocopherol and phytol, the sesquiterpene E-nerolidol and the monoterpenes carene, α-pinene and terpinolene had maximum accumulation under high UV-B, which was accentuated in mature leaves. Also the levels of the sesquiterpenic stress-related hormone abscisic acid (ABA) increased under high UV-B, although 24 h post irradiation ABA concentrations decreased. Such increments of antioxidant terpenes along with ABA suggest elicitation of mechanism of defense. The adaptative responses induced by relatively low UV-B irradiations as suggested by synthesis of terpenes related with membrane stability correlated with augments in terpene synthase activity.


Assuntos
Terpenos/metabolismo , Raios Ultravioleta , Vitis/efeitos da radiação , Ácido Abscísico/metabolismo , Adaptação Fisiológica , Cromatografia Gasosa-Espectrometria de Massas , Fitosteróis/biossíntese , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Análise de Componente Principal , Estresse Fisiológico , Terpenos/química , Vitis/metabolismo
9.
BMC Plant Biol ; 10: 224, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20959019

RESUMO

BACKGROUND: Ultraviolet-B radiation (UV-B, 280-315 nm) is a natural component of sunlight, which has numerous regulatory effects on plant physiology. The nature of the response to UV-B is dependent on fluence rate, dose, duration and wavelength of the UV-B treatment. Some reports have analyzed the changes in gene expression caused by UV-B light on several plant species using microarray technology. However, there is no information on the transcriptome response triggered by UV-B in grapevine. In this paper we investigate the gene expression responses of leaves from in vitro cultured Vitis vinifera cv. Malbec plants subjected to the same dose of biologically effective UV-B radiation (4.75 kJ m-2 d-1) administered at two different fluence rates (16 h at ≅ 8.25 µW cm-2, 4 h at ≅ 33 µW cm-2) using a new custom made GrapeGen Affymetrix GeneChip®. RESULTS: The number of genes modulated by high fluence rate UV-B doubled the number of genes modulated by low fluence UV-B. Their functional analyses revealed several functional categories commonly regulated by both UV-B treatments as well as categories more specifically modulated depending on UV-B fluence rate. General protective responses, namely the induction of pathways regulating synthesis of UV-B absorbing compounds such as the Phenylpropanoid pathway, the induction of different antioxidant defense systems and the activation of pathways commonly associated with pathogen defense and abiotic stress responses seem to play critical roles in grapevine responses against UV-B radiation. Furthermore, high fluence rate UV-B seemed to specifically modulate additional pathways and processes in order to protect grapevine plantlets against UV-B-induced oxidative stress, stop the cell cycle progression, and control protein degradation. On the other hand, low fluence rate UV-B regulated the expression of specific responses in the metabolism of auxin and abscisic acid as well as in the modification of cell walls that could be involved in UV-B acclimation-like processes. CONCLUSION: Our results show the UV-B radiation effects on the leaf transcriptome of grapevine (Vitis vinifera cv. Malbec) plantlets. Functional categories commonly modulated under both UV-B treatments as well as transcripts specifically regulated in an UV-B-intensity dependent way were identified. While high fluence rate UV-B had regulatory effects mainly on defense or general multiple-stress responses pathways, low fluence rate UV-B promoted the expression of genes that could be involved in UV-B protection or the amelioration of the UV-B-induced damage. This study also provides an extensive list of genes regulating multiple metabolic pathways involved in the response of grapevine to UV-B that can be used for future researches.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Folhas de Planta/genética , Raios Ultravioleta , Vitis/genética , Análise por Conglomerados , Relação Dose-Resposta à Radiação , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitis/metabolismo
10.
Nature ; 451(7177): 480-4, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18216857

RESUMO

Cell elongation during seedling development is antagonistically regulated by light and gibberellins (GAs). Light induces photomorphogenesis, leading to inhibition of hypocotyl growth, whereas GAs promote etiolated growth, characterized by increased hypocotyl elongation. The mechanism underlying this antagonistic interaction remains unclear. Here we report on the central role of the Arabidopsis thaliana nuclear transcription factor PIF4 (encoded by PHYTOCHROME INTERACTING FACTOR 4) in the positive control of genes mediating cell elongation and show that this factor is negatively regulated by the light photoreceptor phyB (ref. 4) and by DELLA proteins that have a key repressor function in GA signalling. Our results demonstrate that PIF4 is destabilized by phyB in the light and that DELLAs block PIF4 transcriptional activity by binding the DNA-recognition domain of this factor. We show that GAs abrogate such repression by promoting DELLA destabilization, and therefore cause a concomitant accumulation of free PIF4 in the nucleus. Consistent with this model, intermediate hypocotyl lengths were observed in transgenic plants over-accumulating both DELLAs and PIF4. Destabilization of this factor by phyB, together with its inactivation by DELLAs, constitutes a protein interaction framework that explains how plants integrate both light and GA signals to optimize growth and development in response to changing environments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Forma Celular/efeitos dos fármacos , Forma Celular/efeitos da radiação , Giberelinas/farmacologia , Luz , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Tamanho Celular/efeitos dos fármacos , Tamanho Celular/efeitos da radiação , DNA de Plantas/metabolismo , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Folhas de Planta/metabolismo , Ligação Proteica , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Nicotiana/metabolismo , Triazóis/farmacologia , Técnicas do Sistema de Duplo-Híbrido
11.
Plant J ; 36(2): 203-14, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14535885

RESUMO

Blue light inhibits elongation of etiolated Arabidopsis thaliana hypocotyls during the first 30 min of irradiation by a mechanism that depends on the phototropin 1 (phot1) photoreceptor. The cryptochrome 1 (cry1) photoreceptor begins to exert control after 30 min. To identify genes responsible for the cry1 phase of growth inhibition, mRNA expression profiles of cry1 and wild-type seedlings were compared using DNA microarrays. Of the roughly 420 genes found to be differentially expressed at the point of cry1 response incipience, approximately half were expressed higher and half lower in cry1 relative to the wild type. Many of the cry1-dependent genes encoded kinases, transcription factors, cell cycle regulators, cell wall metabolism enzymes, gibberellic acid (GA) biosynthesis enzymes, and auxin response factors. High-resolution growth studies supported the hypothesis that genes in the last two categories were indeed relevant to cry1-mediated growth control. Inhibiting GA4 biosynthesis with a 3beta-hydroxylase inhibitor (Ca-prohexadione) restored wild-type response kinetics in cry1 and completely suppressed its long-hypocotyl phenotype in blue light. Co-treatment of cry1 seedlings with Ca-prohexadione plus GA4 completely reversed the effects of the inhibitor, restoring the long-hypocotyl phenotype typical of the mutant. Treatment of wild-type seedlings with GA4 was not sufficient to phenocopy cry1 seedlings, but co-treatment with IAA plus GA4 produced cry1-like growth kinetics for a period of approximately 5 h. The genomic and physiological data together indicate that blue light acting through cry1 quickly affects the expression of many genes, a subset of which suppresses stem growth by repressing GA and auxin levels and/or sensitivity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Drosophila , Proteínas do Olho , Flavoproteínas/genética , Genoma de Planta , Giberelinas/farmacologia , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Células Fotorreceptoras de Invertebrados , Transcrição Gênica , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Relógios Biológicos , Criptocromos , Primers do DNA , Flavoproteínas/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/efeitos dos fármacos , Hipocótilo/genética , Hipocótilo/efeitos da radiação , Luz , RNA de Plantas/genética , Receptores Acoplados a Proteínas G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA