Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nephron ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412845

RESUMO

BACKGROUND: Bile acids (BAs) act not only as lipids and lipid-soluble vitamin detergents but also function as signaling molecules, participating in diverse physiological processes. The identification of BA receptors in organs beyond the enterohepatic system, such as the Farnesoid X Receptor (FXR), has initiated inquiries into their organ-specific functions. Among these organs, the kidney prominently expresses FXR. SUMMARY: This review provides a comprehensive overview of various BA species identified in kidneys and delves into the roles of renal apical and basolateral BA transporters. Furthermore, we explore changes in BAs and their potential implications in various renal diseases, particularly in chronic kidney diseases (CKD). Lastly, we center our discussion on FXR, a key BA receptor in the kidney and a potential therapeutic target for renal diseases, providing current insights into the protective mechanisms associated with FXR agonist treatments. KEY MESSAGES: Despite the relatively low concentrations of BAs in the kidney, their presence is noteworthy, with rodents and humans exhibiting distinct renal BA compositions. Renal BA transporters efficiently facilitate either reabsorption into systemic circulation or excretion into the urine. However, adaptive changes in BA transporters are evident during cholestasis. Various renal diseases are accompanied by alterations in BA concentrations and FXR expression. Consequently, the activation of FXR in the kidney could be a promising target for mitigating kidney damage.

2.
Nat Commun ; 14(1): 8056, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052799

RESUMO

Shear stress generated by urinary fluid flow is an important regulator of renal function. Its dysregulation is observed in various chronic and acute kidney diseases. Previously, we demonstrated that primary cilium-dependent autophagy allows kidney epithelial cells to adapt their metabolism in response to fluid flow. Here, we show that nuclear YAP/TAZ negatively regulates autophagy flux in kidney epithelial cells subjected to fluid flow. This crosstalk is supported by a primary cilium-dependent activation of AMPK and SIRT1, independently of the Hippo pathway. We confirm the relevance of the YAP/TAZ-autophagy molecular dialog in vivo using a zebrafish model of kidney development and a unilateral ureteral obstruction mouse model. In addition, an in vitro assay simulating pathological accelerated flow observed at early stages of chronic kidney disease (CKD) activates YAP, leading to a primary cilium-dependent inhibition of autophagic flux. We confirm this YAP/autophagy relationship in renal biopsies from patients suffering from diabetic kidney disease (DKD), the leading cause of CKD. Our findings demonstrate the importance of YAP/TAZ and autophagy in the translation of fluid flow into cellular and physiological responses. Dysregulation of this pathway is associated with the early onset of CKD.


Assuntos
Insuficiência Renal Crônica , Sirtuína 1 , Animais , Camundongos , Humanos , Sirtuína 1/genética , Proteínas Quinases Ativadas por AMP , Peixe-Zebra , Autofagia/fisiologia , Insuficiência Renal Crônica/genética , Células Epiteliais/fisiologia , Rim
3.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36749641

RESUMO

Acute kidney injury is one of the most important complications in patients with COVID-19 and is considered a negative prognostic factor with respect to patient survival. The occurrence of direct infection of the kidney by SARS-CoV-2, and its contribution to the renal deterioration process, remain controversial issues. By studying 32 renal biopsies from patients with COVID-19, we verified that the major pathological feature of COVID-19 is acute tubular injury (ATI). Using single-molecule fluorescence in situ hybridization, we showed that SARS-CoV-2 infected living renal cells and that infection, which paralleled renal angiotensin-converting enzyme 2 expression levels, was associated with increased death. Mechanistically, a transcriptomic analysis uncovered specific molecular signatures in SARS-CoV-2-infected kidneys as compared with healthy kidneys and non-COVID-19 ATI kidneys. On the other hand, we demonstrated that SARS-CoV-2 and hantavirus, 2 RNA viruses, activated different genetic networks despite triggering the same pathological lesions. Finally, we identified X-linked inhibitor of apoptosis-associated factor 1 as a critical target of SARS-CoV-2 infection. In conclusion, this study demonstrated that SARS-CoV-2 can directly infect living renal cells and identified specific druggable molecular targets that can potentially aid in the design of novel therapeutic strategies to preserve renal function in patients with COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/complicações , Hibridização in Situ Fluorescente , Rim/patologia , Biópsia
5.
Nat Commun ; 12(1): 2277, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859189

RESUMO

Determining the epigenetic program that generates unique cell types in the kidney is critical for understanding cell-type heterogeneity during tissue homeostasis and injury response. Here, we profile open chromatin and gene expression in developing and adult mouse kidneys at single cell resolution. We show critical reliance of gene expression on distal regulatory elements (enhancers). We reveal key cell type-specific transcription factors and major gene-regulatory circuits for kidney cells. Dynamic chromatin and expression changes during nephron progenitor differentiation demonstrates that podocyte commitment occurs early and is associated with sustained Foxl1 expression. Renal tubule cells follow a more complex differentiation, where Hfn4a is associated with proximal and Tfap2b with distal fate. Mapping single nucleotide variants associated with human kidney disease implicates critical cell types, developmental stages, genes, and regulatory mechanisms. The single cell multi-omics atlas reveals key chromatin remodeling events and gene expression dynamics associated with kidney development.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Néfrons/crescimento & desenvolvimento , Organogênese/genética , Insuficiência Renal Crônica/genética , Animais , Comunicação Celular , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Epigenômica , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , Néfrons/citologia , Podócitos/fisiologia , Polimorfismo de Nucleotídeo Único , RNA-Seq , Insuficiência Renal Crônica/patologia , Análise de Célula Única , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo
6.
Kidney Int ; 99(3): 632-645, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33137337

RESUMO

Kidney function is crucially dependent on the complex three-dimensional structure of nephrons. Any distortion of their shape may lead to kidney dysfunction. Traditional histological methods present major limitations for three-dimensional tissue reconstruction. Here, we combined tissue clearing, multi-photon microscopy and digital tracing for the reconstruction of single nephrons under physiological and pathological conditions. Sets of nephrons differing in location, shape and size according to their function were identified. Interestingly, nephrons tend to lie in planes. When this technique was applied to a model of cystic kidney disease, cysts were found to develop only in specific nephron segments. Along the same segment, cysts are contiguous within normal non-dilated tubules. Moreover, the shapes of cysts varied according to the nephron segment. Thus, our findings provide a valuable strategy for visualizing the complex structure of kidneys at the single nephron level and, more importantly, provide a basis for understanding pathological processes such as cystogenesis.


Assuntos
Néfrons , Doenças Renais Policísticas , Humanos , Rim , Microscopia
7.
Cell Rep ; 33(4): 108304, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113370

RESUMO

The architecture of renal glomeruli is acquired through intricate and still poorly understood developmental steps. In our study we identify a crucial glomerular morphogenetic event in nephrogenesis that drives the remodeling/separation of the prospective vascular pole (the future entrance of the glomerular arterioles) and the urinary pole (the tubular outflow). We demonstrate that this remodeling is genetically programmed. In fact, in mouse and human, the absence of HNF1B impairs the remodeling/separation of the two poles, leading to trapping and constriction of the tubular outflow inside the glomerulus. This aberration gives rise to obstructive glomerular dilations upon the initiation of primary urine production. In this context, we show that pharmacological decrease of glomerular filtration significantly contains cystic expansion. From a developmental point of view, our study discloses a crucial event on glomerular patterning affecting the "inside-outside" fate of the epithelia in the renal glomerulus.


Assuntos
Nefropatias/congênito , Glomérulos Renais/embriologia , Humanos , Glomérulos Renais/patologia
8.
Nat Cell Biol ; 22(9): 1091-1102, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32868900

RESUMO

Organs and cells must adapt to shear stress induced by biological fluids, but how fluid flow contributes to the execution of specific cell programs is poorly understood. Here we show that shear stress favours mitochondrial biogenesis and metabolic reprogramming to ensure energy production and cellular adaptation in kidney epithelial cells. Shear stress stimulates lipophagy, contributing to the production of fatty acids that provide mitochondrial substrates to generate ATP through ß-oxidation. This flow-induced process is dependent on the primary cilia located on the apical side of epithelial cells. The interplay between fluid flow and lipid metabolism was confirmed in vivo using a unilateral ureteral obstruction mouse model. Finally, primary cilium-dependent lipophagy and mitochondrial biogenesis are required to support energy-consuming cellular processes such as glucose reabsorption, gluconeogenesis and cytoskeletal remodelling. Our findings demonstrate how primary cilia and autophagy are involved in the translation of mechanical forces into metabolic adaptation.


Assuntos
Autofagia/fisiologia , Cílios/metabolismo , Cílios/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Rim/metabolismo , Rim/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Gluconeogênese/fisiologia , Glucose/metabolismo , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Estresse Mecânico
9.
Cancers (Basel) ; 12(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784704

RESUMO

Sigma receptor 1 (SigR1) is an endoplasmic reticulum resident integral membrane protein whose functions remain unclear. Although the liver shows the highest expression of SigR1, its role in this organ is unknown. SigR1 is overexpressed in many cancers and its expression is correlated to hormonal status in hormone-dependent cancers. To better understand the role of SigR1 in hepatocytes we focused our work on the regulation of its expression in tumoral liver. In this context, hepatocellular adenomas, benign hepatic tumors associated with estrogen intake are of particular interest. The expression of SigR1 mRNA was assessed in hepatocellular adenoma (HCA) patients using qPCR. The impact of estrogen on the expression of SigR1 was studied in vivo (mice) and in vitro (HepG2 and Huh7 cells). The effect of HNF1α on the expression of SigR1 was studied in vivo by comparing wild type mice to HNF1 knockout mice. Estrogen enhanced SigR1 expression through its nuclear receptor ERα. HNF1α mutated HCA (H-HCA) significantly overexpressed SigR1 compared to all other HCA subtypes. HNF1 knockout mice showed an increase in SigR1 expression. Overexpressing SigR1 in cellular models increases proliferation rate and storage of lipid droplets, which phenocopies the H-HCA phenotype. SigR1 is involved in hepatocyte proliferation and steatosis and may play an important role in the control of the H-HCA phenotype.

10.
Nat Commun ; 11(1): 3200, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581239

RESUMO

mTOR activation is essential and sufficient to cause polycystic kidneys in Tuberous Sclerosis Complex (TSC) and other genetic disorders. In disease models, a sharp increase of proliferation and cyst formation correlates with a dramatic loss of oriented cell division (OCD). We find that OCD distortion is intrinsically due to S6 kinase 1 (S6K1) activation. The concomitant loss of S6K1 in Tsc1-mutant mice restores OCD but does not decrease hyperproliferation, leading to non-cystic harmonious hyper growth of kidneys. Mass spectrometry-based phosphoproteomics for S6K1 substrates revealed Afadin, a known component of cell-cell junctions required to couple intercellular adhesions and cortical cues to spindle orientation. Afadin is directly phosphorylated by S6K1 and abnormally decorates the apical surface of Tsc1-mutant cells with E-cadherin and α-catenin. Our data reveal that S6K1 hyperactivity alters centrosome positioning in mitotic cells, affecting oriented cell division and promoting kidney cysts in conditions of mTOR hyperactivity.


Assuntos
Divisão Celular , Cinesinas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Miosinas/metabolismo , Doenças Renais Policísticas/patologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Linhagem Celular , Cinesinas/genética , Camundongos , Camundongos Mutantes , Mutação , Miosinas/genética , Fosforilação , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo
11.
JCI Insight ; 5(9)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376805

RESUMO

The loss of functional nephrons after kidney injury triggers the compensatory growth of the remaining ones to allow functional adaptation. However, in some cases, these compensatory events activate signaling pathways that lead to pathological alterations and chronic kidney disease. Little is known about the identity of these pathways and how they lead to the development of renal lesions. Here, we combined mouse strains that differently react to nephron reduction with molecular and temporal genome-wide transcriptome studies to elucidate the molecular mechanisms involved in these events. We demonstrated that nephron reduction led to 2 waves of cell proliferation: the first one occurred during the compensatory growth regardless of the genetic background, whereas the second one occurred, after a quiescent phase, exclusively in the sensitive strain and accompanied the development of renal lesions. Similarly, clustering by coinertia analysis revealed the existence of 2 waves of gene expression. Interestingly, we identified type I interferon (IFN) response as an early (first-wave) and specific signature of the sensitive (FVB/N) mice. Activation of type I IFN response was associated with G1/S cell cycle arrest, which correlated with p21 nuclear translocation. Remarkably, the transient induction of type I IFN response by poly(I:C) injections during the compensatory growth resulted in renal lesions in otherwise-resistant C57BL6 mice. Collectively, these results suggest that the early molecular and cellular events occurring after nephron reduction determine the risk of developing late renal lesions and point to type I IFN response as a crucial event of the deterioration process.


Assuntos
Rim , Néfrons , Insuficiência Renal Crônica , Transdução de Sinais , Animais , Proliferação de Células , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Interferon Tipo I/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Néfrons/metabolismo , Néfrons/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
12.
Proc Natl Acad Sci U S A ; 116(48): 24133-24142, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712448

RESUMO

Hepatocyte nuclear factor-1ß (HNF-1ß) is a tissue-specific transcription factor that is essential for normal kidney development and renal tubular function. Mutations of HNF-1ß produce cystic kidney disease, a phenotype associated with deregulation of canonical (ß-catenin-dependent) Wnt signaling. Here, we show that ablation of HNF-1ß in mIMCD3 renal epithelial cells produces hyperresponsiveness to Wnt ligands and increases expression of Wnt target genes, including Axin2, Ccdc80, and Rnf43 Levels of ß-catenin and expression of Wnt target genes are also increased in HNF-1ß mutant mouse kidneys. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) in wild-type and mutant cells showed that ablation of HNF-1ß increases by 6-fold the number of sites on chromatin that are occupied by ß-catenin. Remarkably, 50% of the sites that are occupied by ß-catenin in HNF-1ß mutant cells colocalize with HNF-1ß-occupied sites in wild-type cells, indicating widespread reciprocal binding. We found that the Wnt target genes Ccdc80 and Rnf43 contain a composite DNA element comprising a ß-catenin/lymphoid enhancer binding factor (LEF) site overlapping with an HNF-1ß half-site. HNF-1ß and ß-catenin/LEF compete for binding to this element, and thereby HNF-1ß inhibits ß-catenin-dependent transcription. Collectively, these studies reveal a mechanism whereby a transcription factor constrains canonical Wnt signaling through direct inhibition of ß-catenin/LEF chromatin binding.


Assuntos
Fator 1-beta Nuclear de Hepatócito/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Animais , Linhagem Celular , Elementos Facilitadores Genéticos , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Fator 1-beta Nuclear de Hepatócito/genética , Medula Renal/citologia , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Mutação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
13.
Cell Death Discov ; 5: 94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31098302

RESUMO

Aspirin (acetyl-salicylic acid) is one of the most ancient drugs of the human pharmacopeia. Nonetheless, its action at low doses is not well understood at the molecular level. One of the applications of low-dose aspirin treatment is the prevention of preeclampsia (PE) in patients at risk. Foeto-placental overexpression of the STOX1A transcription factor in mice triggers PE symptoms. Transcriptomic analysis of the placentas, showed that aspirin massively down-regulates genes of the coagulation and complement cascade, as well as genes involved in lipid transport. The genes modified by aspirin treatment are not the ones that are modified by STOX1 overexpression, suggesting that aspirin could act downstream, symptomatically on the preeclamptic disease. Bioinformatics analysis of the promoters of the deregulated genes showed that they are strongly enriched in HNF transcription factors-binding sites, in accordance with existing literature showing their roles as regulators of coagulation. Two of these transcription factors, Hnf1ß and Hnf4α are found down-regulated by aspirin treatment. In parallel, we show that in human patient placentas, aspirin-induced deregulations of genes of the coagulation cascade are also observed. Finally, the expression of Hnf1ß target sequences (Kif12, F2, Hnf4α promoters and a synthetic concatemer of the Hnf1ß-binding site) were investigated by transfection in trophoblast cell models, with or without aspirin treatment and with or without STOX1A overexpression. In this model we observed that STOX1A and aspirin tended to synergize in the down-regulation of Hnf1ß target genes in trophoblasts.

14.
J Am Soc Nephrol ; 29(10): 2493-2509, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097458

RESUMO

BACKGROUND: Mutation of HNF1B, the gene encoding transcription factor HNF-1ß, is one cause of autosomal dominant tubulointerstitial kidney disease, a syndrome characterized by tubular cysts, renal fibrosis, and progressive decline in renal function. HNF-1ß has also been implicated in epithelial-mesenchymal transition (EMT) pathways, and sustained EMT is associated with tissue fibrosis. The mechanism whereby mutated HNF1B leads to tubulointerstitial fibrosis is not known. METHODS: To explore the mechanism of fibrosis, we created HNF-1ß-deficient mIMCD3 renal epithelial cells, used RNA-sequencing analysis to reveal differentially expressed genes in wild-type and HNF-1ß-deficient mIMCD3 cells, and performed cell lineage analysis in HNF-1ß mutant mice. RESULTS: The HNF-1ß-deficient cells exhibited properties characteristic of mesenchymal cells such as fibroblasts, including spindle-shaped morphology, loss of contact inhibition, and increased cell migration. These cells also showed upregulation of fibrosis and EMT pathways, including upregulation of Twist2, Snail1, Snail2, and Zeb2, which are key EMT transcription factors. Mechanistically, HNF-1ß directly represses Twist2, and ablation of Twist2 partially rescued the fibroblastic phenotype of HNF-1ß mutant cells. Kidneys from HNF-1ß mutant mice showed increased expression of Twist2 and its downstream target Snai2. Cell lineage analysis indicated that HNF-1ß mutant epithelial cells do not transdifferentiate into kidney myofibroblasts. Rather, HNF-1ß mutant epithelial cells secrete high levels of TGF-ß ligands that activate downstream Smad transcription factors in renal interstitial cells. CONCLUSIONS: Ablation of HNF-1ß in renal epithelial cells leads to the activation of a Twist2-dependent transcriptional network that induces EMT and aberrant TGF-ß signaling, resulting in renal fibrosis through a cell-nonautonomous mechanism.


Assuntos
Gota/genética , Gota/patologia , Fator 1-beta Nuclear de Hepatócito/genética , Hiperuricemia/genética , Hiperuricemia/patologia , Nefropatias/genética , Nefropatias/patologia , Animais , Linhagem Celular , Linhagem da Célula/genética , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Feminino , Fibrose , Genes Dominantes , Gota/metabolismo , Fator 1-beta Nuclear de Hepatócito/deficiência , Fator 1-beta Nuclear de Hepatócito/metabolismo , Humanos , Hiperuricemia/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteína 1 Relacionada a Twist/deficiência , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
15.
Am J Physiol Renal Physiol ; 315(1): F57-F73, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29537311

RESUMO

Following the discovery of (R)-roscovitine's beneficial effects in three polycystic kidney disease (PKD) mouse models, cyclin-dependent kinases (CDKs) inhibitors have been investigated as potential treatments. We have used various affinity chromatography approaches to identify the molecular targets of roscovitine and its more potent analog (S)-CR8 in human and murine polycystic kidneys. These methods revealed casein kinases 1 (CK1) as additional targets of the two drugs. CK1ε expression at the mRNA and protein levels is enhanced in polycystic kidneys of 11 different PKD mouse models as well as in human polycystic kidneys. A shift in the pattern of CK1α isoforms is observed in all PKD mouse models. Furthermore, the catalytic activities of both CK1ε and CK1α are increased in mouse polycystic kidneys. Inhibition of CK1ε and CK1α may thus contribute to the long-lasting attenuating effects of roscovitine and (S)-CR8 on cyst development. CDKs and CK1s may constitute a dual therapeutic target to develop kinase inhibitory PKD drug candidates.


Assuntos
Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase Ialfa/antagonistas & inibidores , Rim/efeitos dos fármacos , Doenças Renais Policísticas/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Piridinas/farmacologia , Roscovitina/farmacologia , Animais , Caseína Quinase 1 épsilon/genética , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Ialfa/genética , Caseína Quinase Ialfa/metabolismo , Catálise , Cromatografia de Afinidade/métodos , Modelos Animais de Doenças , Humanos , Rim/enzimologia , Rim/patologia , Camundongos Transgênicos , Doenças Renais Policísticas/enzimologia , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Purinas/metabolismo , Piridinas/metabolismo , Roscovitina/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
PLoS Genet ; 13(12): e1007093, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29240767

RESUMO

Congenital nephron number varies widely in the human population and individuals with low nephron number are at risk of developing hypertension and chronic kidney disease. The development of the kidney occurs via an orchestrated morphogenetic process where metanephric mesenchyme and ureteric bud reciprocally interact to induce nephron formation. The genetic networks that modulate the extent of this process and set the final nephron number are mostly unknown. Here, we identified a specific isoform of MITF (MITF-A), a bHLH-Zip transcription factor, as a novel regulator of the final nephron number. We showed that overexpression of MITF-A leads to a substantial increase of nephron number and bigger kidneys, whereas Mitfa deficiency results in reduced nephron number. Furthermore, we demonstrated that MITF-A triggers ureteric bud branching, a phenotype that is associated with increased ureteric bud cell proliferation. Molecular studies associated with an in silico analyses revealed that amongst the putative MITF-A targets, Ret was significantly modulated by MITF-A. Consistent with the key role of this network in kidney morphogenesis, Ret heterozygosis prevented the increase of nephron number in mice overexpressing MITF-A. Collectively, these results uncover a novel transcriptional network that controls branching morphogenesis during kidney development and identifies one of the first modifier genes of nephron endowment.


Assuntos
Rim/fisiologia , Fator de Transcrição Associado à Microftalmia/metabolismo , Néfrons/fisiologia , Animais , Feminino , Humanos , Rim/embriologia , Rim/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fator de Transcrição Associado à Microftalmia/genética , Morfogênese , Néfrons/anatomia & histologia , Néfrons/crescimento & desenvolvimento , Néfrons/metabolismo , Organogênese , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ureter/metabolismo , Ureter/fisiologia
17.
J Am Soc Nephrol ; 28(11): 3205-3217, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28739648

RESUMO

AKI is a frequent condition that involves renal microcirculation impairment, infiltration of inflammatory cells with local production of proinflammatory cytokines, and subsequent epithelial disorders and mitochondrial dysfunction. Peroxisome proliferator-activated receptor γ coactivator 1-α (PPARGC1A), a coactivator of the transcription factor PPAR-γ that controls mitochondrial biogenesis and function, has a pivotal role in the early dysfunction of the proximal tubule and the subsequent renal repair. Here, we evaluated the potential role of hepatocyte nuclear factor-1ß (HNF-1ß) in regulating PPARGC1A expression in AKI. In mice, endotoxin injection to induce AKI also induced early and transient inflammation and PPARGC1A inhibition, which overlapped with downregulation of the HNF-1ß transcriptional network. In vitro, exposure of proximal tubule cells to the inflammatory cytokines IFN-γ and TNF-α led to inhibition of HNF-1ß transcriptional activity. Moreover, inhibition of HNF-1ß significantly reduced PPARGC1A expression and altered mitochondrial morphology and respiration in proximal tubule cells. Chromatin immunoprecipitation assays and PCR analysis confirmed HNF-1ß binding to the Ppargc1a promoter in mouse kidneys. We also demonstrated downregulation of renal PPARGC1A expression in a patient with an HNF1B germinal mutation. Thus, we propose that HNF-1ß links extracellular inflammatory signals to mitochondrial dysfunction during AKI partly via PPARGC1A signaling. Our findings further strengthen the view of HNF1B-related nephropathy as a mitochondrial disorder in adulthood.


Assuntos
Injúria Renal Aguda/metabolismo , Fator 1-beta Nuclear de Hepatócito/fisiologia , Túbulos Renais Proximais/metabolismo , Mitocôndrias/metabolismo , Injúria Renal Aguda/etiologia , Adulto , Animais , Fator 1-beta Nuclear de Hepatócito/antagonistas & inibidores , Fator 1-beta Nuclear de Hepatócito/genética , Humanos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia
18.
J Am Soc Nephrol ; 28(10): 2887-2900, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28507058

RESUMO

The transcription factor hepatocyte nuclear factor-1ß (HNF-1ß) is essential for normal kidney development and function. Inactivation of HNF-1ß in mouse kidney tubules leads to early-onset cyst formation and postnatal lethality. Here, we used Pkhd1/Cre mice to delete HNF-1ß specifically in renal collecting ducts (CDs). CD-specific HNF-1ß mutant mice survived long term and developed slowly progressive cystic kidney disease, renal fibrosis, and hydronephrosis. Compared with wild-type littermates, HNF-1ß mutant mice exhibited polyuria and polydipsia. Before the development of significant renal structural abnormalities, mutant mice exhibited low urine osmolality at baseline and after water restriction and administration of desmopressin. However, mutant and wild-type mice had similar plasma vasopressin and solute excretion levels. HNF-1ß mutant kidneys showed increased expression of aquaporin-2 mRNA but mislocalized expression of aquaporin-2 protein in the cytoplasm of CD cells. Mutant kidneys also had decreased expression of the UT-A urea transporter and collectrin, which is involved in apical membrane vesicle trafficking. Treatment of HNF-1ß mutant mIMCD3 cells with hypertonic NaCl inhibited the induction of osmoregulated genes, including Nr1h4, which encodes the transcription factor FXR that is required for maximal urinary concentration. Chromatin immunoprecipitation and sequencing experiments revealed HNF-1ß binding to the Nr1h4 promoter in wild-type kidneys, and immunoblot analysis revealed downregulated expression of FXR in HNF-1ß mutant kidneys. These findings reveal a novel role of HNF-1ß in osmoregulation and identify multiple mechanisms, whereby mutations of HNF-1ß produce defects in urinary concentration.


Assuntos
Fator 1-beta Nuclear de Hepatócito/fisiologia , Túbulos Renais Coletores/fisiologia , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos Transgênicos , Poliúria/genética , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Urina
19.
J Clin Invest ; 127(5): 1873-1888, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28394260

RESUMO

Worldwide epidemics of metabolic diseases, including liver steatosis, are associated with an increased frequency of malignancies, showing the highest positive correlation for liver cancer. The heterogeneity of liver cancer represents a clinical challenge. In liver, the transcription factor PPARγ promotes metabolic adaptations of lipogenesis and aerobic glycolysis under the control of Akt2 activity, but the role of PPARγ in liver tumorigenesis is unknown. Here we have combined preclinical mouse models of liver cancer and genetic studies of a human liver biopsy atlas with the aim of identifying putative therapeutic targets in the context of liver steatosis and cancer. We have revealed a protumoral interaction of Akt2 signaling with hepatocyte nuclear factor 1α (HNF1α) and PPARγ, transcription factors that are master regulators of hepatocyte and adipocyte differentiation, respectively. Akt2 phosphorylates and inhibits HNF1α, thus relieving the suppression of hepatic PPARγ expression and promoting tumorigenesis. Finally, we observed that pharmacological inhibition of PPARγ is therapeutically effective in a preclinical murine model of steatosis-associated liver cancer. Taken together, our studies in humans and mice reveal that Akt2 controls hepatic tumorigenesis through crosstalk between HNF1α and PPARγ.


Assuntos
Fígado Gorduroso/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , PPAR gama/biossíntese , Transdução de Sinais , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Fígado Gorduroso/genética , Células HEK293 , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Neoplasias Hepáticas Experimentais/genética , Camundongos , Camundongos Transgênicos , PPAR gama/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA