Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5967, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013865

RESUMO

Crosstalk between the actin and microtubule cytoskeletons is important for many cellular processes. Recent studies have shown that microtubules and F-actin can assemble to form a composite structure where F-actin occupies the microtubule lumen. Whether these cytoskeletal hybrids exist in physiological settings and how they are formed is unclear. Here, we show that the short-crossover Class I actin filament previously identified inside microtubules in human HAP1 cells is cofilin-bound F-actin. Lumenal F-actin can be reconstituted in vitro, but cofilin is not essential. Moreover, actin filaments with both cofilin-bound and canonical morphologies reside within human platelet microtubules under physiological conditions. We propose that stress placed upon the microtubule network during motor-driven microtubule looping and sliding may facilitate the incorporation of actin into microtubules.


Assuntos
Citoesqueleto de Actina , Actinas , Plaquetas , Microtúbulos , Microtúbulos/metabolismo , Humanos , Citoesqueleto de Actina/metabolismo , Plaquetas/metabolismo , Actinas/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Microscopia Crioeletrônica
2.
Blood ; 143(6): 480-481, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329776

Assuntos
Eritrócitos , Cinética
3.
Commun Med (Lond) ; 3(1): 125, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735203

RESUMO

BACKGROUND: The Montreal platelet syndrome kindred (MPS) with VWF p.V1316M mutation (2B-VWDMPS) is an extremely rare disorder. It has been associated with macrothrombocytopenia, spontaneous platelet clumping, mucocutaneous, and other bleeding, which can be largely prevented by von Willebrand factor (VWF) concentrate infusion. However, supplemental platelet transfusion has been required on occasion, particularly for severe gastrointestinal bleeds. This raised the question of whether a previously uncharacterized platelet dysfunction contributes to bleeding diathesis in 2B-VWDMPS patients. We have previously shown that membrane ballooning, a principal part of the platelet procoagulant membrane dynamics (PMD) after collagen stimulation, is driven by the influx of Na+ and Cl-, followed by the entry of water. METHODS: We study two members (mother and daughter) of the MPS kindred with severe bleeding phenotype and address this question by coupling quantitative platelet shotgun proteomics and validating biochemical assays, with the systematic analysis of platelet procoagulant membrane dynamics (PMD). Using N-terminomics/TAILS (terminal amine isotopic labeling of substrates), we compare changes in proteolysis between healthy and 2B-VWDMPS platelets. RESULTS: Here, we report in 2B-VWDMPS platelets, the loss of the transmembrane chloride channel-1 (CLIC1), and reduced chloride ion influx after collagen stimulation. This was associated with diminished membrane ballooning, phosphatidylserine externalization, and membrane thrombin formation, as well as a distinct phenotypic composition of platelets over fibrillar collagen. We also identify processing differences of VWF, fibronectin (FN1), and Crk-like protein (CRKL). 2B-VWDMPS platelets are shown to be basally activated, partially degranulated, and have marked loss of regulatory, cytoskeletal, and contractile proteins. CONCLUSIONS: This may account for structural disorganization, giant platelet formation, and a weakened hemostatic response.


The Montreal platelet syndrome (MPS) is a very rare genetic illness caused by a specific modification in a protein called von Willebrand factor (VWF). VWF circulates in the blood and works with platelets to stop blood from escaping when blood vessels are injured. People with MPS have a bleeding problem, as they have decreased circulating VWF activity and platelets that also don't function as expected. Here, we studied a mother and a daughter who live with this condition to better understand if there are other reasons behind the bleeding issues in this family. These participants had low levels of several other proteins, and their platelets did not gather as usual to arrest bleeding. They also did not undergo the usual changes in shape. These changes could contribute to the bleeding problems reported in this family.

4.
Nat Commun ; 14(1): 4026, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419900

RESUMO

Platelets, small hemostatic blood cells, are derived from megakaryocytes. Both bone marrow and lung are principal sites of thrombopoiesis although underlying mechanisms remain unclear. Outside the body, however, our ability to generate large number of functional platelets is poor. Here we show that perfusion of megakaryocytes ex vivo through the mouse lung vasculature generates substantial platelet numbers, up to 3000 per megakaryocyte. Despite their large size, megakaryocytes are able repeatedly to passage through the lung vasculature, leading to enucleation and subsequent platelet generation intravascularly. Using ex vivo lung and an in vitro microfluidic chamber we determine how oxygenation, ventilation, healthy pulmonary endothelium and the microvascular structure support thrombopoiesis. We also show a critical role for the actin regulator Tropomyosin 4 in the final steps of platelet formation in lung vasculature. This work reveals the mechanisms of thrombopoiesis in lung vasculature and informs approaches to large-scale generation of platelets.


Assuntos
Plaquetas , Microfluídica , Camundongos , Animais , Megacariócitos , Trombopoese , Pulmão
5.
J Thromb Haemost ; 21(7): 1903-1919, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36963633

RESUMO

BACKGROUND: Preeclampsia (PE) is a hypertensive disorder during pregnancy that results in significant adverse maternal and neonatal outcomes. Platelet activation is present in PE and contributes to the thrombo-hemorrhagic states of the disorder. However, the mechanisms that initiate and/or sustain platelet activation in PE are ill-defined. OBJECTIVES: We aimed to characterise this mechanism and the procoagulant potentials of platelets in PE. METHODS: In this quantitative observational study, we analyzed platelet procoagulant membrane dynamics in patients with PE (n = 21) compared with age-matched normotensive pregnancies (n = 20), gestational hypertension (n = 10), and non-pregnant female controls (n = 19). We analyzed fluorescently labeled indicators of platelet activation, bioenergetics, and procoagulation (phosphatidylserine exposure and thrombin generation), coupled with high-resolution imaging and thrombelastography. We then validated our findings using flow cytometry, immunoassays, classical pharmacology, and convolutional neural network analysis. RESULTS: PE platelets showed significant ultra-structural remodeling, are more extensively preactivated than in healthy pregnancies and can circulate as microaggregates. Preactivated platelets of PE externalized phosphatidylserine and thrombin formed on the platelet membranes. Platelets' expression of facilitative glucose transporter-1 increased in all pregnant groups. However, PE platelets additionally overexpress glucose transporter-3 to enhance glucose uptake and sustain activation and secretion events. Although preeclampsia platelets exposed to subendothelial collagen showed incremental activation, the absolute hemostatic response to collagen was diminished, and likely contributed to greater blood loss perioperatively. CONCLUSIONS: We revealed 2 bioenergetic mediators in the mechanism of sustained platelet procoagulation in preeclampsia. Although glucose transporter-1 and glucose transporter-3 remain elusive antiprocoagulant targets, they may be sensitive monitors of PE onset and progression.


Assuntos
Plaquetas , Pré-Eclâmpsia , Gravidez , Recém-Nascido , Humanos , Feminino , Plaquetas/fisiologia , Trombina , Fosfatidilserinas , Hemorragia , Colágeno , Proteínas Facilitadoras de Transporte de Glucose
6.
J Thromb Haemost ; 21(5): 1307-1321, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36716966

RESUMO

BACKGROUND: Patients with COVID-19 are at increased risk of thrombosis, which is associated with altered platelet function and coagulopathy, contributing to excess mortality. OBJECTIVES: To characterize the mechanism of altered platelet function in COVID-19 patients. METHODS: The platelet proteome, platelet functional responses, and platelet-neutrophil aggregates were compared between patients hospitalized with COVID-19 and healthy control subjects using tandem mass tag proteomic analysis, Western blotting, and flow cytometry. RESULTS: COVID-19 patients showed a different profile of platelet protein expression (858 altered of the 5773 quantified). Levels of COVID-19 plasma markers were enhanced in the platelets of COVID-19 patients. Gene ontology pathway analysis demonstrated that the levels of granule secretory proteins were raised, whereas those of platelet activation proteins, such as the thrombopoietin receptor and protein kinase Cα, were lowered. Basally, platelets of COVID-19 patients showed enhanced phosphatidylserine exposure, with unaltered integrin αIIbß3 activation and P-selectin expression. Agonist-stimulated integrin αIIbß3 activation and phosphatidylserine exposure, but not P-selectin expression, were decreased in COVID-19 patients. COVID-19 patients had high levels of platelet-neutrophil aggregates, even under basal conditions, compared to controls. This association was disrupted by blocking P-selectin, demonstrating that platelet P-selectin is critical for the interaction. CONCLUSIONS: Overall, our data suggest the presence of 2 platelet populations in patients with COVID-19: one of circulating platelets with an altered proteome and reduced functional responses and another of P-selectin-expressing neutrophil-associated platelets. Platelet-driven thromboinflammation may therefore be one of the key factors enhancing the risk of thrombosis in COVID-19 patients.


Assuntos
COVID-19 , Trombose , Humanos , Proteoma/metabolismo , COVID-19/complicações , Proteômica , Fosfatidilserinas/metabolismo , Inflamação/metabolismo , Trombose/etiologia , Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ativação Plaquetária , Selectinas/metabolismo
9.
Circ Res ; 130(3): 384-400, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35012325

RESUMO

BACKGROUND: DNA hypomethylation at the F2RL3 (F2R like thrombin or trypsin receptor 3) locus has been associated with both smoking and atherosclerotic cardiovascular disease; whether these smoking-related associations form a pathway to disease is unknown. F2RL3 encodes protease-activated receptor 4, a potent thrombin receptor expressed on platelets. Given the role of thrombin in platelet activation and the role of thrombus formation in myocardial infarction, alterations to this biological pathway could be important for ischemic cardiovascular disease. METHODS: We conducted multiple independent experiments to assess whether DNA hypomethylation at F2RL3 in response to smoking is associated with risk of myocardial infarction via changes to platelet reactivity. Using cohort data (N=3205), we explored the relationship between smoking, DNA hypomethylation at F2RL3, and myocardial infarction. We compared platelet reactivity in individuals with low versus high DNA methylation at F2RL3 (N=41). We used an in vitro model to explore the biological response of F2RL3 to cigarette smoke extract. Finally, a series of reporter constructs were used to investigate how differential methylation could impact F2RL3 gene expression. RESULTS: Observationally, DNA methylation at F2RL3 mediated an estimated 34% of the smoking effect on increased risk of myocardial infarction. An association between methylation group (low/high) and platelet reactivity was observed in response to PAR4 (protease-activated receptor 4) stimulation. In cells, cigarette smoke extract exposure was associated with a 4.9% to 9.3% reduction in DNA methylation at F2RL3 and a corresponding 1.7-(95% CI, 1.2-2.4, P=0.04) fold increase in F2RL3 mRNA. Results from reporter assays suggest the exon 2 region of F2RL3 may help control gene expression. CONCLUSIONS: Smoking-induced epigenetic DNA hypomethylation at F2RL3 appears to increase PAR4 expression with potential downstream consequences for platelet reactivity. Combined evidence here not only identifies F2RL3 DNA methylation as a possible contributory pathway from smoking to cardiovascular disease risk but from any feature potentially influencing F2RL3 regulation in a similar manner.


Assuntos
Plaquetas/metabolismo , Epigênese Genética , Infarto do Miocárdio/genética , Receptores de Trombina/genética , Idoso , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/epidemiologia , Receptores de Trombina/metabolismo , Fumar/epidemiologia
10.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638997

RESUMO

One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3ß. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3ß (Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/ß phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/ß reduced thrombin-mediated platelet aggregation, integrin αIIbß3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3ß phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3ß resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/ß KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3ß KI. In conclusion, our data indicate that GSK3α and GSK3ß have differential roles in regulating platelet function.


Assuntos
Plaquetas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Ativação Plaquetária/genética , Agregação Plaquetária/genética , Transdução de Sinais/genética , Trombose/metabolismo , Animais , Doadores de Sangue , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Integrinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombina/metabolismo , Trombose/genética
11.
Blood Adv ; 5(7): 1884-1898, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33792632

RESUMO

The reactivity of platelets, which play a key role in the pathogenesis of atherothrombosis, is tightly regulated. The integral membrane protein tetherin/bone marrow stromal antigen-2 (BST-2) regulates membrane organization, altering both lipid and protein distribution within the plasma membrane. Because membrane microdomains have an established role in platelet receptor biology, we sought to characterize the physiological relevance of tetherin/BST-2 in those cells. To characterize the potential importance of tetherin/BST-2 to platelet function, we used tetherin/BST-2-/- murine platelets. In the mice, we found enhanced function and signaling downstream of a subset of membrane microdomain-expressing receptors, including the P2Y12, TP thromboxane, thrombin, and GPVI receptors. Preliminary studies in humans have revealed that treatment with interferon-α (IFN-α), which upregulates platelet tetherin/BST-2 expression, also reduces adenosine diphosphate-stimulated platelet receptor function and reactivity. A more comprehensive understanding of how tetherin/BST-2 negatively regulates receptor function was provided in cell line experiments, where we focused on the therapeutically relevant P2Y12 receptor (P2Y12R). Tetherin/BST-2 expression reduced both P2Y12R activation and trafficking, which was accompanied by reduced receptor lateral mobility specifically within membrane microdomains. In fluorescence lifetime imaging-Förster resonance energy transfer (FLIM-FRET)-based experiments, agonist stimulation reduced basal association between P2Y12R and tetherin/BST-2. Notably, the glycosylphosphatidylinositol (GPI) anchor of tetherin/BST-2 was required for both receptor interaction and observed functional effects. In summary, we established, for the first time, a fundamental role of the ubiquitously expressed protein tetherin/BST-2 in negatively regulating membrane microdomain-expressed platelet receptor function.


Assuntos
Antígenos CD , Antígeno 2 do Estroma da Médula Óssea , Animais , Antígenos CD/genética , Plaquetas , Linhagem Celular , Proteínas Ligadas por GPI/genética , Camundongos
12.
Platelets ; 32(7): 895-901, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33818240

RESUMO

Structurally, aquaporins (AQPs) are small channel proteins with monomers of ~ 30 kDa that are assembled as tetramers to form pores on cell membranes. Aquaporins mediate the conduction of water but at times also small solutes including glycerol across cell membranes and along osmotic gradients. Thirteen isoforms of AQPs have been reported in mammalian cells, and several of these are likely expressed in platelets. Osmotic swelling mediated by AQP1 sustains the calcium entry required for platelet phosphatidylserine exposure and microvesiculation, through calcium permeable stretch-activated or mechanosensitive cation channels. Notably, deletion of AQP1 diminishes platelet procoagulant membrane dynamics in vitro and arterial thrombosis in vivo, independent of platelet granule secretion and without affecting hemostasis. Water entry into platelets promotes procoagulant activity, and AQPs may also be critical for the initiation and progression of venous thrombosis. Platelet AQPs may therefore represent valuable targets for future development of a new class of antithrombotics, namely, anti-procoagulant antithrombotics, that are mechanistically distinct from current antithrombotics. However, the structure of AQPs does not make for easy targeting of these channels, hence they remain elusive drug targets. Nevertheless, thrombosis data in animal models provide compelling reasons to continue the pursuit of AQP-targeted antithrombotics. In this review, we discuss the role of aquaporins in platelet secretion, aggregation and procoagulation, the challenge of drugging AQPs, and the prospects of targeting AQPs for arterial and venous antithrombosis.


Assuntos
Aquaporinas/metabolismo , Plaquetas/metabolismo , Testes de Função Plaquetária/métodos , Humanos , Modelos Moleculares
13.
Blood ; 137(5): 678-689, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538796

RESUMO

Thrombospondin-1 (TSP-1) is released by platelets upon activation and can increase platelet activation, but its role in hemostasis in vivo is unclear. We show that TSP-1 is a critical mediator of hemostasis that promotes platelet activation by modulating inhibitory cyclic adenosine monophosphate (cAMP) signaling. Genetic deletion of TSP-1 did not affect platelet activation in vitro, but in vivo models of hemostasis and thrombosis showed that TSP-1-deficient mice had prolonged bleeding, defective thrombosis, and increased sensitivity to the prostacyclin mimetic iloprost. Adoptive transfer of wild-type (WT) but not TSP-1-/- platelets ameliorated the thrombotic phenotype, suggesting a key role for platelet-derived TSP-1. In functional assays, TSP-1-deficient platelets showed an increased sensitivity to cAMP signaling, inhibition of platelet aggregation, and arrest under flow by prostacyclin (PGI2). Plasma swap experiments showed that plasma TSP-1 did not correct PGI2 hypersensitivity in TSP-1-/- platelets. By contrast, incubation of TSP-1-/- platelets with releasates from WT platelets or purified TSP-1, but not releasates from TSP-1-/- platelets, reduced the inhibitory effects of PGI2. Activation of WT platelets resulted in diminished cAMP accumulation and downstream signaling, which was associated with increased activity of the cAMP hydrolyzing enzyme phosphodiesterase 3A (PDE3A). PDE3A activity and cAMP accumulation were unaffected in platelets from TSP-1-/- mice. Platelets deficient in CD36, a TSP-1 receptor, showed increased sensitivity to PGI2/cAMP signaling and diminished PDE3A activity, which was unaffected by platelet-derived or purified TSP-1. This scenario suggests that the release of TSP-1 regulates hemostasis in vivo through modulation of platelet cAMP signaling at sites of vascular injury.


Assuntos
Plaquetas/fisiologia , AMP Cíclico/fisiologia , Transtornos Hemorrágicos/genética , Hemostasia/fisiologia , Trombospondina 1/fisiologia , Animais , Tempo de Sangramento , Plaquetas/efeitos dos fármacos , Antígenos CD36/deficiência , Antígenos CD36/fisiologia , Células Cultivadas , Cloretos/toxicidade , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Grânulos Citoplasmáticos/metabolismo , Epoprostenol/fisiologia , Compostos Férricos/toxicidade , Humanos , Iloprosta/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Transfusão de Plaquetas , Sistemas do Segundo Mensageiro/fisiologia , Trombose/induzido quimicamente , Trombose/prevenção & controle , Trombospondina 1/deficiência , Trombospondina 1/farmacologia
14.
Blood Adv ; 5(3): 674-686, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560379

RESUMO

The exocyst is an octameric complex comprising 8 distinct protein subunits, exocyst complex components (EXOC) 1 to 8. It has an established role in tethering secretory vesicles to the plasma membrane, but its relevance to platelet granule secretion and function remains to be determined. Here, EXOC3 conditional knockout (KO) mice in the megakaryocyte/platelet lineage were generated to assess exocyst function in platelets. Significant defects in platelet aggregation, integrin activation, α-granule (P-selectin and platelet factor 4), dense granule, and lysosomal granule secretion were detected in EXOC3 KO platelets after treatment with a glycoprotein VI (GPVI)-selective agonist, collagen-related peptide (CRP). Except for P-selectin exposure, these defects were completely recovered by maximal CRP concentrations. GPVI surface levels were also significantly decreased by 14.5% in KO platelets, whereas defects in proximal GPVI signaling responses, Syk and LAT phosphorylation, and calcium mobilization were also detected, implying an indirect mechanism for these recoverable defects due to decreased surface GPVI. Paradoxically, dense granule secretion, integrin activation, and changes in surface expression of integrin αIIb (CD41) were significantly increased in KO platelets after protease-activated receptor 4 activation, but calcium responses were unaltered. Elevated integrin activation responses were completely suppressed with a P2Y12 receptor antagonist, suggesting enhanced dense granule secretion of adenosine 5'-diphosphate as a critical mediator of these responses. Finally, arterial thrombosis was significantly accelerated in KO mice, which also displayed improved hemostasis determined by reduced tail bleeding times. These findings reveal a regulatory role for the exocyst in controlling critical aspects of platelet function pertinent to thrombosis and hemostasis.


Assuntos
Ativação Plaquetária , Trombose , Animais , Plaquetas , Hemostasia , Camundongos , Glicoproteínas da Membrana de Plaquetas/genética , Trombose/genética
15.
Oncogenesis ; 9(2): 10, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019914

RESUMO

Cancer cells go through a process known as epithelial-mesenchymal transition (EMT) during which they acquire the ability to migrate and invade extracellular matrix. Some cells also acquire the ability to move across a layer of endothelial cells to enter and exit the bloodstream; intra- and extravasation, respectively. The transcription factor PRH/HHEX (proline-rich homeodomain/haematopoietically expressed homeobox) controls cell proliferation and cell migration/invasion in a range of cell types. Our previous work showed that PRH activity is downregulated in prostate cancer cells owing to increased inhibitory PRH phosphorylation and that this increases cell proliferation and invasion. PRH inhibits migration and invasion by prostate and breast epithelial cells in part by activating the transcription of Endoglin, a transforming growth factor ß (TGFß) co-receptor. Here we show that depletion of PRH in immortalised prostate epithelial cells results in increased extravasation in vitro. We show that blood platelets stimulate extravasation of cells with depleted PRH and that inhibition of TGFß signalling blocks the effects of platelets on these cells. Moreover, TGFß induces changes characteristic of EMT including decreased E-Cadherin expression and increased Snail expression. We show that in prostate cells PRH regulates multiple genes involved in EMT and TGFß signalling. However, both platelets and TGFß increase PRH phosphorylation. In addition, TGFß increases binding of its effector pSMAD3 to the PRH/HHEX promoter and downregulates PRH protein and mRNA levels. Thus, TGFß signalling downregulates PRH activity by multiple mechanisms and induces an EMT that facilitates extravasation and sensitises cells to TGFß.

16.
Platelets ; 31(7): 853-859, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31893963

RESUMO

Carbonic anhydrase (CA) inhibitors have a long history of safe clinical use as mild diuretics, in the treatment of glaucoma and for altitude sickness prevention. In this study, we aimed to determine if CA inhibition may be an alternative approach to control thrombosis. We utilized a high-resolution dynamic imaging approach to provide mechanistic evidence that CA inhibitors may be potent anti-procoagulant agents in vitro and effective anti-thrombotics in vivo. Acetazolamide and methazolamide, while sparing platelet secretion, attenuated intracellular chloride ion entry and suppressed the procoagulant response of activated platelets in vitro and thrombosis in vivo. The chemically similar N-methyl acetazolamide, which lacks CA inhibitory activity, did not affect platelet procoagulant response in vitro. Outputs from rotational thromboelastometry did not reflect changes in procoagulant activity and reveal the need for a suitable clinical test for procoagulant activity. Drugs specifically targeting procoagulant remodeling of activated platelets, by blockade of carbonic anhydrases, may provide a new way to control platelet-driven thrombosis without blocking essential platelet secretion responses.


Assuntos
Plaquetas/metabolismo , Inibidores da Anidrase Carbônica/uso terapêutico , Trombose/tratamento farmacológico , Animais , Inibidores da Anidrase Carbônica/farmacologia , Modelos Animais de Doenças , Humanos , Camundongos
18.
Front Cardiovasc Med ; 6: 99, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417909

RESUMO

Genetically modified mice are indispensable for establishing the roles of platelets in arterial thrombosis and hemostasis. Microfluidics assays using anticoagulated whole blood are commonly used as integrative proxy tests for platelet function in mice. In the present study, we quantified the changes in collagen-dependent thrombus formation for 38 different strains of (genetically) modified mice, all measured with the same microfluidics chamber. The mice included were deficient in platelet receptors, protein kinases or phosphatases, small GTPases or other signaling or scaffold proteins. By standardized re-analysis of high-resolution microscopic images, detailed information was obtained on altered platelet adhesion, aggregation and/or activation. For a subset of 11 mouse strains, these platelet functions were further evaluated in rhodocytin- and laminin-dependent thrombus formation, thus allowing a comparison of glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2) and integrin α6ß1 pathways. High homogeneity was found between wild-type mice datasets concerning adhesion and aggregation parameters. Quantitative comparison for the 38 modified mouse strains resulted in a matrix visualizing the impact of the respective (genetic) deficiency on thrombus formation with detailed insight into the type and extent of altered thrombus signatures. Network analysis revealed strong clusters of genes involved in GPVI signaling and Ca2+ homeostasis. The majority of mice demonstrating an antithrombotic phenotype in vivo displayed with a larger or smaller reduction in multi-parameter analysis of collagen-dependent thrombus formation in vitro. Remarkably, in only approximately half of the mouse strains that displayed reduced arterial thrombosis in vivo, this was accompanied by impaired hemostasis. This was also reflected by comparing in vitro thrombus formation (by microfluidics) with alterations in in vivo bleeding time. In conclusion, the presently developed multi-parameter analysis of thrombus formation using microfluidics can be used to: (i) determine the severity of platelet abnormalities; (ii) distinguish between altered platelet adhesion, aggregation and activation; and (iii) elucidate both collagen and non-collagen dependent alterations of thrombus formation. This approach may thereby aid in the better understanding and better assessment of genetic variation that affect in vivo arterial thrombosis and hemostasis.

19.
Cell Signal ; 59: 34-40, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30880223

RESUMO

The Ral GTPases, RalA and RalB, have been implicated in numerous cellular processes, but are most widely known for having regulatory roles in exocytosis. Recently, we demonstrated that deletion of both Ral genes in a platelet-specific mouse gene knockout caused a substantial defect in surface exposure of P-selectin, with only a relatively weak defect in platelet dense granule secretion that did not alter platelet functional responses such as aggregation or thrombus formation. We sought to investigate the function of Rals in human platelets using the recently described Ral inhibitor, RBC8. Initial studies in human platelets confirmed that RBC8 could effectively inhibit Ral GTPase activation, with an IC50 of 2.2 µM and 2.3 µM for RalA and RalB, respectively. Functional studies using RBC8 revealed significant, dose-dependent inhibition of platelet aggregation, secretion (α- and dense granule), integrin activation and thrombus formation, while α-granule release of platelet factor 4, Ca2+ signalling or phosphatidylserine exposure were unaltered. Subsequent studies in RalAB-null mouse platelets pretreated with RBC8 showed dose-dependent decreases in integrin activation and dense granule secretion, with significant inhibition of platelet aggregation and P-selectin exposure at 10 µM RBC8. This study strongly suggests therefore that although RBC8 is useful as a Ral inhibitor in platelets, it is likely also to have off-target effects in the same concentration range as for Ral inhibition. So, whilst clearly useful as a Ral inhibitor, interpretation of data needs to take this into account when assessing roles for Rals using RBC8.


Assuntos
Plaquetas/enzimologia , Inibidores Enzimáticos/química , Naftalenos/química , Agregação Plaquetária/efeitos dos fármacos , Piranos/química , Pirazóis/química , Proteínas ral de Ligação ao GTP/antagonistas & inibidores , Animais , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Camundongos Knockout , Naftalenos/farmacologia , Selectina-P/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Piranos/farmacologia , Pirazóis/farmacologia
20.
Platelets ; 30(1): 31-40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30365369

RESUMO

Our understanding of fundamental biological processes within platelets is continually evolving. A critical feature of platelet biology relates to the intricate uptake, packaging and release of bioactive cargo from storage vesicles, essential in mediating a range of classical (haemostasis/thrombosis) and non-classical (regeneration/inflammation/metastasis) roles platelets assume. Pivotal to the molecular control of these vesicle trafficking events are the small GTPases of the Ras superfamily, which function as spatially distinct, molecular switches controlling essential cellular processes. Herein, we specifically focus on members of the Rab, Arf and Ras subfamilies, which comprise over 130 members and platelet proteomic datasets suggest that more than half of these are expressed in human platelets. We provide an update of current literature relating to trafficking roles for these GTPases in platelets, particularly regarding endocytic and exocytic events, but also vesicle biogenesis and provide speculative argument for roles that other related GTPases and regulatory proteins may adopt in platelets. Advances in our understanding of small GTPase function in the anucleate platelet has been hampered by the lack of specific molecular tools, but it is anticipated that this will be greatly accelerated in the years ahead and will be crucial to the identification of novel therapeutic targets controlling different platelet processes.


Assuntos
Plaquetas/metabolismo , Membrana Celular/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais , Endocitose , Exocitose , Humanos , Proteínas Monoméricas de Ligação ao GTP/genética , Família Multigênica , Transporte Proteico , Transdução de Sinais , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA