Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539473

RESUMO

Ovarian cancer mortality rates have not decreased significantly in the past years. As most women are still diagnosed in an advanced stage, there is a need for new treatment strategies for recurrent disease. A potentially new developing targeted approach, theranostics, combines diagnostics and treatment using radiopharmaceuticals. Through target receptors, imaging and treatment of malignant tissue can be achieved. For ovarian malignancy, the follicle-stimulating hormone (FSH) receptor may serve as a possible target since expression appears to be limited to ovarian cells. In this systematic review, we aim to gather all available literature on the expression of the FSH receptor in ovarian tumors. Pubmed, Embase and the Cochrane databases were searched until December 2023 for eligible studies. The search yielded 41 studies, mostly regarding serous carcinomas, sex cord-stromal tumors (SCSTs) and cell lines of serous and SCSTs. Various techniques were used to analyze the expression of the FSH receptor. For serous carcinomas, conflicting results on the expression of the FSH receptor were found. Studies on SCSTs, mainly studying the subtype of granulosa cell tumors, all showed positive expression of the FSH receptor. In the cell lines studies, the KGN cell line derived from a granulosa cell tumor shows positive expression in all studies. Available studies show that SCSTs express the FSH receptor. A theranostic approach targeting the FSH receptor may, therefore, provide a useful new approach for this malignancy with limited therapeutic options in recurrent disease.

2.
EJNMMI Res ; 14(1): 19, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363422

RESUMO

BACKGROUND: Mutations in the epidermal growth factor receptor (EGFR) kinase domain are common in non-small cell lung cancer. Conventional tyrosine kinase inhibitors target the mutation site in the ATP binding pocket, thereby inhibiting the receptor's function. However, subsequent treatment resistance mutations in the ATP binding site are common. The EGFR allosteric inhibitor, EAI045, is proposed to have an alternative mechanism of action, disrupting receptor signaling independent of the ATP-binding site. The antibody cetuximab is hypothesized to increase the number of accessible allosteric pockets for EAI045, thus increasing the potency of the inhibitor. This work aimed to gain further knowledge on pharmacokinetics, the EGFR mutation-targeting potential, and the influence of cetuximab on the uptake by radiolabeling EAI045 with carbon-11 and tritium. RESULTS: 2-(5-fluoro-2-hydroxyphenyl)-2-((2-iodobenzyl)amino)-N-(thiazol-2-yl)acetamide and 2-(5-fluoro-2-hydroxyphenyl)-N-(5-iodothiazol-2-yl)-2-(1-oxoisoindolin-2-yl)acetamide were synthesized as precursors for the carbon-11 and tritium labeling of EAI045, respectively. [11C]EAI045 was synthesized using [11C]CO in a palladium-catalyzed ring closure in a 10 ± 1% radiochemical yield (decay corrected to end of [11C]CO2 production), > 97% radiochemical purity and 26 ± 1 GBq/µmol molar activity (determined at end of synthesis) in 51 min. [3H]EAI045 was synthesized by a tritium-halogen exchange in a 0.2% radiochemical yield, 98% radiochemical purity, and 763 kBq/nmol molar activity. The ability of [11C]EAI045 to differentiate between L858R/T790M mutated EGFR expressing H1975 xenografts and wild-type EGFR expressing A549 xenografts was evaluated in female nu/nu mice. The uptake was statistically significantly higher in H1975 xenografts compared to A549 xenografts (0.45 ± 0.07%ID/g vs. 0.31 ± 0.10%ID/g, P = 0.0166). The synergy in inhibition between EAI045 and cetuximab was evaluated in vivo and in vitro. While there was some indication that cetuximab influenced the uptake of [3H]EAI045 in vitro, this could not be confirmed in vivo when tumor-bearing mice were administered cetuximab (0.5 mg), 24 h prior to injection of [11C]EAI045. CONCLUSIONS: EAI045 was successfully labeled with tritium and carbon-11, and the in vivo results indicated [11C]EAI045 may be able to distinguish between mutated and non-mutated EGFR in non-small cell lung cancer mouse models. Cetuximab was hypothesized to increase EAI045 uptake; however, no significant effect was observed on the uptake of [11C]EAI045 in vivo or [3H]EAI045 in vitro in H1975 xenografts and cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA