Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Curr Health Sci J ; 50(2): 170-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39371061

RESUMO

Aging is the primary risk factor for cognitive decline, impacting multiple cognitive domains and significantly elevating the risk of conditions such as mild cognitive impairment and dementia. In addition to aging, several diseases contribute to cognitive decline. Alzheimer's disease, a progressive neurodegenerative disorder, leads to the loss of neurons and synapses in the brain, resulting in a profound decline in cognitive abilities and functional capacity. Several studies provide compelling evidence that modifiable lifestyle factors play a crucial role in influencing cognitive health. Adopting healthier behaviors has been shown to significantly reduce the risk of cognitive decline. Genetic factors also play a crucial role in cognitive decline, with several genes being identified that influence the risk of developing conditions like Alzheimer's disease and other dementias. Long-term use of opioids and cocaine is also associated with cognitive decline, affecting functions such as memory and executive processes. Understanding the factors contributing to cognitive decline in aging and disease is essential for developing strategies to mitigate its impact. The drugs available to treat patients with cognitive decline due to advanced aging and drug abuse are also summarize.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39377784

RESUMO

Psychotropic drugs are vital in psychiatry, aiding in the management of mental health disorders. Their use requires an understanding of their pharmacological properties, therapeutic applications, and potential side effects. Ongoing research aims to improve their efficacy and safety. Biomarkers play a crucial role in understanding and predicting memory decline in psychotropic drug users. A comprehensive understanding of biomarkers, including neuroimaging, biochemical, genetic, and cognitive assessments, is essential for developing targeted interventions and preventive strategies. In this narrative review, we performed a comprehensive search on PubMed and Google using review-specific terms. Clinicians should use a multifaceted approach, including neurotransmitter analysis, neurotrophic factors, miRNA profiling, and cognitive tasks for early intervention and personalized treatment. Anxiolytics' mechanisms involve various neurotransmitter systems and emerging targets. Research on biomarkers for memory decline in anxiolytic users can lead to early detection and intervention, enhancing clinical practices and aligning with precision medicine. Mood stabilizer users can benefit from early detection of memory decline through RNA, neurophysiological, and inflammatory biomarkers, promoting timely interventions. Performance-enhancing drugs may boost athletic performance in the short term, but their long-term health risks and ethical issues make their use problematic. Long-term use of psychotropic performance enhancers in athletes shows changes in biomarkers of cognitive decline, necessitating ongoing monitoring and intervention strategies. Understanding these genetic influences on memory decline helps pave the way for personalized approaches to prevent or mitigate cognitive deterioration, emphasizing the importance of genetic screening and early interventions based on an individual's genetic profile. Future research should focus on refining these biomarkers and protective measures against cognitive deterioration. Overall, a comprehensive understanding of biomarkers in psychotropic drug users is essential for developing targeted interventions and preventive strategies.

3.
Adv Sci (Weinh) ; : e2306863, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252446

RESUMO

Microglia are critically involved in post-stroke inflammation affecting neurological outcomes. Lipid droplet (LD) accumulation in microglia results in a dysfunctional and pro-inflammatory state in the aged brain and worsens the outcome of neuroinflammatory and neurodegenerative diseases. However, the role of LD-rich microglia (LDRM) under stroke conditions is unknown. Using in vitro and in vivo stroke models, herein accumulation patterns of microglial LD and their corresponding microglial inflammatory signaling cascades are studied. Interactions between temporal and spatial dynamics of lipid profiles and microglial phenotypes in different post-stroke brain regions are found. Hence, microglia display enhanced levels of LD accumulation and elevated perilipin 2 (PLIN2) expression patterns when exposed to hypoxia or stroke. Such LDRM exhibit high levels of TNF-α, IL-6, and IL-1ß as well as a pro-inflammatory phenotype and differentially expressed lipid metabolism-related genes. These post-ischemic alterations result in distinct lipid profiles with spatial and temporal dynamics, especially with regard to cholesteryl ester and triacylglycerol levels, further exacerbating post-ischemic inflammation. The present study sheds new light on the dynamic changes of brain lipid profiles and aggregation patterns of LD in microglia exposed to ischemia, demonstrating a mutual mechanism between microglial phenotype and function, which contributes to progression of brain injury.

4.
Transl Stroke Res ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243323

RESUMO

Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) have shown considerable promise as restorative stroke treatment. In a head-to-head comparison in mice exposed to transient proximal middle cerebral artery occlusion (MCAO), sEVs obtained from MSCs cultured under hypoxic conditions particularly potently enhanced long-term brain tissue survival, microvascular integrity, and angiogenesis. These observations suggest that hypoxic preconditioning might represent the strategy of choice for harvesting MSC-sEVs for clinical stroke trials. To test the efficacy of hypoxic MSCs in a second stroke model in an additional species, we now exposed 6-8-month-old Sprague-Dawley rats to permanent distal MCAO and intravenously administered vehicle, platelet sEVs, or sEVs obtained from hypoxic MSCs (1% O2; 2 × 106 or 2 × 107 cell equivalents/kg) at 24 h, 3, 7, and 14 days post-MCAO. Over 28 days, motor-coordination recovery was evaluated by rotating pole and cylinder tests. Ischemic injury, brain inflammatory responses, and peri-infarct angiogenesis were assessed by infarct volumetry and immunohistochemistry. sEVs obtained from hypoxic MSCs did not influence infarct volume in this permanent MCAO model, but promoted motor-coordination recovery over 28 days at both sEV doses. Ischemic injury was associated with brain ED1+ macrophage infiltrates and Iba1+ microglia accumulation in the peri-infarct cortex of vehicle-treated rats. Hypoxic MSC-sEVs reduced brain macrophage infiltrates and microglia accumulation in the peri-infarct cortex. In vehicle-treated rats, CD31+/BrdU+ proliferating endothelial cells were found in the peri-infarct cortex. Hypoxic MSC-sEVs increased the number of CD31+/BrdU+ proliferating endothelial cells. Our results provide evidence that hypoxic MSC-derived sEVs potently enhance neurological recovery, reduce neuroinflammation. and increase angiogenesis in rat permanent distal MCAO.

5.
Life (Basel) ; 14(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39337894

RESUMO

Post-stroke depression (PSD) represents a significant neuropsychiatric complication that affects between 39% and 52% of stroke survivors, leading to impaired recovery, decreased quality of life, and increased mortality. This comprehensive review synthesizes our current knowledge of PSD, encompassing its epidemiology, risk factors, underlying neurochemical mechanisms, and the existing tools for preclinical investigation, including animal models and behavioral analyses. Despite the high prevalence and severe impact of PSD, challenges persist in accurately modeling its complex symptomatology in preclinical settings, underscoring the need for robust and valid animal models to better understand and treat PSD. This review also highlights the multidimensional nature of PSD, where both biological and psychosocial factors interplay to influence its onset and course. Further, we examine the efficacy and limitations of the current animal models in mimicking the human PSD condition, along with behavioral tests used to evaluate depressive-like behaviors in rodents. This review also sets a new precedent by integrating the latest findings across multidisciplinary studies, thereby offering a unique and comprehensive perspective of existing knowledge. Finally, the development of more sophisticated models that closely replicate the clinical features of PSD is crucial in order to advance translational research and facilitate the discovery of future effective therapies.

6.
Curr Health Sci J ; 50(1): 133-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846476

RESUMO

Microglial cells play a pivotal role in the brain's health and operation through all stages of life and in the face of illness. The contributions of microglia during the developmental phase of the brain markedly contrast with their contributions in the brain of adults after injury. Enhancing our understanding of the pathological mechanisms that involve microglial activity in brains as they age and in cerebrovascular conditions is crucial for informing the creation of novel therapeutic approaches. In this work we provide results on microglia transcriptomics in the juvenile vs injured adult brain and its impact on adult brain regeneration after cerebral ischemia. During fetal brain development, microglia cells are involved in gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis, neurogenesis and synaptic reorganization by engulfing neuronal extensions. Within the mature, intact brain, microglial cells exhibit reduced movement of their processes in response to minimal neuronal activity, while they continuously monitor their surroundings and clear away cellular debris. Following a stroke in the adult brain, inflammation, neurodegeneration, or disruptions in neural equilibrium trigger alterations in both the genetic blueprint and the structure and roles of microglia, a state often described as "activated" microglia. Such genetic shifts include a notable increase in the pathways related to phagosomes, lysosomes, and the presentation of antigens, coupled with a rise in the expression of genes linked to cell surface receptors. We conclude that a comparison of microglia transcriptomic activity during brain development and post-stroke adult brain might provide us with new clues about how neurodegeneration occurs in the adult brain. This information could very useful to develop drugs to slow down or limit the post-stroke pathology and improve clinical outcome.

7.
Aging Cell ; 23(7): e14208, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797976

RESUMO

Anti-aging research has made significant strides in identifying treatments capable of extending lifespan across a range of organisms, from simple invertebrates to mammals. This review showcases the current state of anti-aging interventions, highlighting the lifespan extensions observed in animal models through various treatments and the challenges encountered in translating these findings to humans. Despite promising results in lower organisms, the translation of anti-aging treatments to human applications presents a considerable challenge. This discrepancy can be attributed to the increasing complexity of biological systems, species-specific metabolic and genetic differences, and the redundancy of metabolic pathways linked to longevity. Our review focuses on analyzing these challenges, offering insights into the efficacy of anti-aging mechanisms across species and identifying key barriers to their translation into human treatments. By synthesizing current knowledge and identifying gaps in translatability, this review aims to underscore the importance of advancing these therapies for human benefit. Bridging this gap is essential to assess the potential of such treatments in extending the human healthspan.


Assuntos
Longevidade , Longevidade/efeitos dos fármacos , Animais , Metformina/farmacologia , Saccharomyces/efeitos dos fármacos , Saccharomyces/crescimento & desenvolvimento , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Camundongos , Resveratrol/farmacologia , Sirolimo/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Espermidina/farmacologia , Cloroquina/farmacologia , Envelhecimento/efeitos dos fármacos , Especificidade da Espécie
8.
J Neural Transm (Vienna) ; 131(7): 763-771, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38598100

RESUMO

Each year, 15 million people worldwide suffer from strokes. Consequently, researchers face increasing pressure to develop reliable behavioural tests for assessing functional recovery after a stroke. Our aim was to establish a new motor performance index that can be used to evaluate post-stroke recovery in both young and aged animals. Furthermore, we validate the proposed procedure and recommend the necessary number of animals for experimental stroke studies. Young (n = 20) and aged (n = 27) Sprague-Dawley rats were randomly assigned to receive either sham or stroke surgery. The newly proposed performance index was calculated for the post-stroke acute, subacute and chronic phases. The advantage of using our test over current tests lies in the fact that the newly proposed motor index test evaluates not only the performance of the unaffected side in comparison to the affected one but also assesses overall performance by taking into account speed and coordination. Moreover, it reduces the number of animals needed to achieve a statistical power of 80%. This aspect is particularly crucial when studying aged rodents. Our approach can be used to monitor and assess the effectiveness of stroke therapies in experimental models using aged animals.


Assuntos
Envelhecimento , Modelos Animais de Doenças , Ratos Sprague-Dawley , Animais , Masculino , Envelhecimento/fisiologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/complicações , Ratos , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Atividade Motora/fisiologia
9.
Exp Neurol ; 376: 114753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490317

RESUMO

Cerebrovascular diseases are the second leading cause of death worldwide. Despite significant research investment, the only available therapeutic options are mechanical thrombectomy and tissue plasminogen activator thrombolysis. None of the more than a thousand drugs tested on animal models have proven successful in human clinical trials. Several factors contribute to this poor translation of data from stroke-related animal models to human stroke patients. Firstly, our understanding of the molecular and cellular processes involved in recovering from an ischemic stroke is severely limited. Secondly, although the risk of stroke is particularly high among older patients with comorbidities, most drugs are tested on young, healthy animals in controlled laboratory conditions. Furthermore, in animal models, the tracking of post-stroke recovery typically spans only 3 to 28 days, with occasional extensions to 60 days, whereas human stroke recovery is a more extended and complex process. Thirdly, young animal models often exhibit a considerably higher rate of spontaneous recovery compared to humans following a stroke. Fourth, only a very limited number of animals are utilized for each condition, including control groups. Another contributing factor to the much smaller beneficial effects in humans is that positive outcomes from numerous animal studies are more readily accepted than results reported in human trials that do not show a clear benefit to the patient. Useful recommendations for conducting experiments in animal models, with increased chances of translatability to humans, have been issued by both the STEPS investigative team and the STAIR committee. However, largely, due to economic factors, these recommendations are largely ignored. Furthermore, one might attribute the overall failures in predicting and subsequently developing effective acute stroke therapies beyond thrombolysis to potential design deficiencies in clinical trials.


Assuntos
Modelos Animais de Doenças , Transplante de Células-Tronco , Acidente Vascular Cerebral , Animais , Humanos , Acidente Vascular Cerebral/terapia , Transplante de Células-Tronco/métodos
10.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396795

RESUMO

Diabetes mellitus is a metabolic disorder with global economic implications that can lead to complications such as diabetic cardiomyopathy. The aim of this study was to compare the effects of chitosan versus dapagliflozin in mouse diabetic cardiomyopathy. We used 32 C57Bl/6 male mice aged between 8 and 10 weeks, which were randomly divided into Control-without diabetes mellitus (DM), type 1 DM (T1DM), T1DM + Chitosan, and T1DM + Dapapgliflozin groups. We induced diabetes with streptozotocin and treated the animals for 12 weeks. The analysis showed a reduction in intramyocardial fibrosis in the T1DM + Dapapgliflozin compared to T1DM animals. In T1DM + CHIT, a reduction in intramyocardial fibrosis was observed although, accordingly, there was also no significant decrease in blood glucose. The level of oxidative stress was reduced in the groups of treated animals compared to T1DM. All these observed changes in the structure and function of hearts were highlighted in the echocardiographic examination. In the treated groups, there was delayed appearance of left ventricular (LV) hypertrophy, a slight decrease in the ejection fraction of the LV, and an improved diastolic profile. The results demonstrate that chitosan has promising effects on diabetic cardiomyopathy that are comparable to the beneficial effects of dapagliflozin.


Assuntos
Compostos Benzidrílicos , Quitosana , Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Glucosídeos , Masculino , Camundongos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Diabetes Mellitus Tipo 1/metabolismo , Quitosana/farmacologia , Quitosana/uso terapêutico , Função Ventricular Esquerda , Modelos Animais de Doenças , Fibrose
11.
Brain Pathol ; 34(5): e13232, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38198833

RESUMO

The developmental origins of the brain's response to injury can play an important role in recovery after a brain lesion. In this study, we investigated whether the ischemic young adult brain can re-express brain plasticity genes that were active during early postnatal development. Differentially expressed genes in the cortex of juvenile post-natal day 3 and the peri-infarcted cortical areas of young, 3-month-old post-stroke rats were identified using fixed-effects modeling within an empirical Bayes framework through condition-specific comparison. To further analyze potential biological processes, upregulated and downregulated genes were assessed for enrichment using GSEA software. The genes showing the highest expression changes were subsequently verified through RT-PCR. Our findings indicate that the adult brain partially recapitulates the gene expression profile observed in the juvenile brain but fails to upregulate many genes and pathways necessary for brain plasticity. Of the upregulated genes in post-stroke brains, specific roles have not been assigned to Apobec1, Cenpf, Ect2, Folr2, Glipr1, Myo1f, and Pttg1. New genes that failed to upregulate in the adult post-stroke brain include Bex4, Cd24, Klhl1/Mrp2, Trim67, and St8sia2. Among the upregulated pathways, the largest change was observed in the KEGG pathway "One carbon pool of folate," which is necessary for cellular proliferation, followed by the KEGG pathway "Antifolate resistance," whose genes mainly encode the family of ABC transporters responsible for the efflux of drugs that have entered the brain. We also noted three less-described downregulated KEGG pathways in experimental models: glycolipid biosynthesis, oxytocin, and cortisol pathways, which could be relevant as therapeutic targets. The limited brain plasticity of the adult brain is illustrated through molecular and histological analysis of the axonal growth factor, KIF4. Collectively, these results strongly suggest that further research is needed to decipher the complex genetic mechanisms that prevent the re-expression of brain plasticity-associated genes in the adult brain.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Animais , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Ratos , Masculino , Plasticidade Neuronal/fisiologia , Ratos Sprague-Dawley , Transcriptoma
12.
Cell Mol Life Sci ; 81(1): 30, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212456

RESUMO

BACKGROUND: Lipid droplets (LD), lipid-storing organelles containing neutral lipids like glycerolipids and cholesterol, are increasingly accepted as hallmarks of inflammation. The nuclear paraspeckle assembly transcript 1 (NEAT1), a long non-coding RNA with over 200 nucleotides, exerts an indispensable impact on regulating both LD agglomeration and autophagy in multiple neurological disorders. However, knowledge as to how NEAT1 modulates the formation of LD and associated signaling pathways is limited. METHODS: In this study, primary microglia were isolated from newborn mice and exposed to oxygen-glucose-deprivation/reoxygenation (OGD/R). To further explore NEAT1-dependent mechanisms, an antisense oligonucleotide (ASO) was adopted to silence NEAT1 under in vitro conditions. Studying NEAT1-dependent interactions with regard to autophagy and LD agglomeration under hypoxic conditions, the inhibitor and activator of autophagy 3-methyladenine (3-MA) and rapamycin (RAPA) were used, respectively. In a preclinical stroke model, mice received intraventricular injections of ASO NEAT1 or control vectors in order to yield NEAT1 knockdown. Analysis of readout parameters included qRT-PCR, immunofluorescence, western blot assays, and behavioral tests. RESULTS: Microglia exposed to OGD/R displayed a temporal pattern of NEAT1 expression, peaking at four hours of hypoxia followed by six hours of reoxygenation. After effectively silencing NEAT1, LD formation and autophagy-related proteins were significantly repressed in hypoxic microglia. Stimulating autophagy in ASO NEAT1 microglia under OGD/R conditions by means of RAPA reversed the downregulation of LD agglomeration and perilipin 2 (PLIN2) expression. On the contrary, application of 3-MA promoted repression of both LD agglomeration and expression of the LD-associated protein PLIN2. Under in vivo conditions, NEAT1 was significantly increased in mice at 24 h post-stroke. Knockdown of NEAT1 significantly alleviated LD agglomeration and inhibited autophagy, resulting in improved cerebral perfusion, reduced brain injury and increased neurological recovery. CONCLUSION: NEAT1 is a key player of LD agglomeration and autophagy stimulation, and NEAT1 knockdown provides a promising therapeutic value against stroke.


Assuntos
RNA Longo não Codificante , Acidente Vascular Cerebral , Animais , Camundongos , Apoptose/genética , Autofagia/genética , Gotículas Lipídicas/metabolismo , Microglia/metabolismo , Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo
13.
J Integr Neurosci ; 23(1): 13, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38287856

RESUMO

Both classic epigenetic modifications and microRNAs can impact a range of bodily processes, from metabolism to brain function, and may contribute to the development of diseases such as cancer, cardiovascular disorders, and psychiatric disorders. Numerous studies suggest a connection between epigenetic changes and mood disorders. In this study, we performed a comprehensive search using PubMed and Google for the terms "epigenetics", "ageing", "miRNA", "schizophrenia", and "mood disorders" in the titles and abstracts of articles. Epigenetic changes during early life may play a crucial role in triggering severe mental disorders and shaping their clinical trajectory. Although these alterations can take place at any age, their impact may not be immediately evident or observable until later in life. Epigenetic modifications play a crucial role in the ageing process and challenge the prevailing belief that mutations are the primary driver of ageing. However, it is plausible that these epigenetic changes are a consequence of the disorder rather than its root cause. Moreover, both the disorder and the epigenetic alterations may be influenced by shared environmental or genetic factors. In the near future, we might be able to replace chronological age with biological age, based on the epigenetic clock, with the promise of providing greater therapeutic benefits. A wide range of epigenetic drugs are currently under development at various stages. Although their full effectiveness is yet to be realized, they show great potential in the treatment of cancer, psychiatric disorders, and other complex diseases.


Assuntos
Transtornos Mentais , MicroRNAs , Esquizofrenia , Humanos , Metilação de DNA , Epigênese Genética , Transtornos Mentais/genética , Transtornos Mentais/tratamento farmacológico , Envelhecimento/genética
15.
J Neuroinflammation ; 20(1): 210, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715288

RESUMO

BACKGROUND: The intravenous delivery of adult neural precursor cells (NPC) has shown promising results in enabling cerebroprotection, brain tissue remodeling, and neurological recovery in young, healthy stroke mice. However, the translation of cell-based therapies to clinical settings has encountered challenges. It remained unclear if adult NPCs could induce brain tissue remodeling and recovery in mice with hyperlipidemia, a prevalent vascular risk factor in stroke patients. METHODS: Male mice on a normal (regular) diet or on cholesterol-rich Western diet were exposed to 30 min intraluminal middle cerebral artery occlusion (MCAO). Vehicle or 106 NPCs were intravenously administered immediately after reperfusion, at 3 day and 7 day post-MCAO. Neurological recovery was evaluated using the Clark score, Rotarod and tight rope tests over up to 56 days. Histochemistry and light sheet microscopy were used to examine ischemic injury and brain tissue remodeling. Immunological responses in peripheral blood and brain were analyzed through flow cytometry. RESULTS: NPC administration reduced infarct volume, blood-brain barrier permeability and the brain infiltration of neutrophils, monocytes, T cells and NK cells in the acute stroke phase in both normolipidemic and hyperlipidemic mice, but increased brain hemorrhage formation and neutrophil, monocyte and CD4+ and CD8+ T cell counts and activation in the blood of hyperlipidemic mice. While neurological deficits in hyperlipidemic mice were reduced by NPCs at 3 day post-MCAO, NPCs did not improve neurological deficits at later timepoints. Besides, NPCs did not influence microglia/macrophage abundance and activation (assessed by morphology analysis), astroglial scar formation, microvascular length or branching point density (evaluated using light sheet microscopy), long-term neuronal survival or brain atrophy in hyperlipidemic mice. CONCLUSIONS: Intravenously administered NPCs did not have persistent effects on post-ischemic neurological recovery and brain remodeling in hyperlipidemic mice. These findings highlight the necessity of rigorous investigations in vascular risk factor models to fully assess the long-term restorative effects of cell-based therapies. Without comprehensive studies in such models, the clinical potential of cell-based therapies cannot be definitely determined.


Assuntos
Células-Tronco Neurais , Acidente Vascular Cerebral , Masculino , Animais , Camundongos , Neurônios , Hemorragias Intracranianas , Encéfalo
16.
Theranostics ; 13(12): 4197-4216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554272

RESUMO

Background: Stroke stimulates reactive astrogliosis, aquaporin 4 (AQP4) depolarization and neuroinflammation. Preconditioned extracellular vesicles (EVs) from microglia exposed to hypoxia, in turn, reduce poststroke brain injury. Nevertheless, the underlying mechanisms of such effects are elusive, especially with regards to inflammation, AQP4 polarization, and cerebrospinal fluid (CSF) flow. Methods: Primary microglia and astrocytes were exposed to oxygen-glucose deprivation (OGD) injury. For analyzing the role of AQP4 expression patterns under hypoxic conditions, a co-culture model of astrocytes and microglia was established. Further studies applied a stroke model, where some mice also received an intracisternal tracer infusion of rhodamine B. As such, these in vivo studies involved the analysis of AQP4 polarization, CSF flow, astrogliosis, and neuroinflammation as well as ischemia-induced brain injury. Results: Preconditioned EVs decreased periinfarct AQP4 depolarization, brain edema, astrogliosis, and inflammation in stroke mice. Likewise, EVs promoted postischemic CSF flow and cerebral blood perfusion, and neurological recovery. Under in vitro conditions, hypoxia stimulated M2 microglia polarization, whereas EVs augmented M2 microglia polarization and repressed M1 microglia polarization even further. In line with this, astrocytes displayed upregulated AQP4 clustering and proinflammatory cytokine levels when exposed to OGD, which was reversed by preconditioned EVs. Reduced AQP4 depolarization due to EVs, however, was not a consequence of unspecific inflammatory regulation, since LPS-induced inflammation in co-culture models of astrocytes and microglia did not result in altered AQP4 expression patterns in astrocytes. Conclusions: These findings show that hypoxic microglia may participate in protecting against stroke-induced brain damage by regulating poststroke inflammation, astrogliosis, AQP4 depolarization, and CSF flow due to EV release.


Assuntos
Aquaporina 4 , Lesões Encefálicas , Vesículas Extracelulares , Acidente Vascular Cerebral , Animais , Camundongos , Aquaporina 4/metabolismo , Lesões Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Gliose/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Oxigênio/metabolismo , Acidente Vascular Cerebral/metabolismo
17.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445979

RESUMO

Ischemic stroke, a significant neurovascular disorder, currently lacks effective restorative medication. However, recently developed nanomedicines bring renewed promise for alleviating ischemia's effects and facilitating the healing of neurological and physical functions. The aim of this systematic review was to evaluate the efficacy of nanotherapies in animal models of stroke and their potential impact on future stroke therapies. We also assessed the scientific quality of current research focused on nanoparticle-based treatments for ischemic stroke in animal models. We summarized the effectiveness of nanotherapies in these models, considering multiple factors such as their anti-inflammatory, antioxidant, and angiogenetic properties, as well as their safety and biodistribution. We conclude that the application of nanomedicines may reduce infarct size and improve neurological function post-stroke without causing significant organ toxicity.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Nanopartículas , Acidente Vascular Cerebral , Animais , Distribuição Tecidual , Acidente Vascular Cerebral/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Anti-Inflamatórios , Nanopartículas/uso terapêutico , Isquemia Encefálica/tratamento farmacológico
18.
J Clin Med ; 12(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445321

RESUMO

This randomized, split-mouth, controlled clinical study assessed the additional clinical benefits of a local desiccant antimicrobial agent (HY) combined with subgingival mechanical instrumentation (SRP) vs. SRP alone in treating severe periodontitis. Patients with stages III and IV periodontitis received full-mouth periodontal examinations at baseline and after a three-month follow-up. Two randomly selected hemiarches in each periodontitis patient were treated with SRP plus HY and were included in the test group, while the other two hemiarches received only SRP and were included in the control group. In thirty patients, the analyses of the evolution of the periodontal parameters over time showed statistically significant mean differences for the probing depths and clinical attachment level values resulting from all the examined sites, as well as from the interproximal sites (p < 0.001) in both the test and control groups. The intergroup comparisons of the same four parameters showed no significant differences (p = 0.322, p = 0.36, p = 0.516, and p = 0.509, respectively). Based on these study results, no additional benefits were obtained after HY subgingival applications.

19.
J Am Geriatr Soc ; 71(8): 2640-2652, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224415

RESUMO

BACKGROUND: Medication-related osteonecrosis of the jaw (MRONJ) is clinically defined as a non-healing jawbone ulcerative-necrotic lesion appearing after dental therapy or minor trauma in patients treated previously with anti-resorptive, anti-angiogenic or immunomodulators. Older patients with osteoporosis and cancer receive these pharmacological agents regularly. As these patients are long-term survivors, efficient treatment is of paramount importance for their quality of life. METHODS: Literature searches via PubMed were conducted to identify relevant MRONJ studies. Basic information on MRONJ classification, clinical features, and pathosphysiology is presented herein as well as various clinical studies dealing with MRONJ in patients with osteoporosis and cancer. Lastly, we discuss current managment of patients and new trends in treatment of MRONJ. RESULTS: Although close follow-up and local hygiene have been advocated by some authors, severe forms of MRONJ are not responsive to conservative therapy. At present, there is no "gold standard" therapy for this condition. However, as the physiopathological basis of MRONJ is represented by the anti-angiogenic action of various pharmacological agents, new methods to increase and promote local angiogenesis and vascularization have recently been successfully tested in vitro, limited preclinical studies, and in a pilot clinical study. CONCLUSIONS: It appears that the best method implies application on the lesion of endothelial progenitor cells as well as pro-angiogenic factors such as Vascular Endothelial Growth Factor (VEGF) and other related molecules. More recently, scaffolds in which these factors have been incorporated have shown positive results in limited trials. However, these studies must be replicated to include a large number of cases before any official therapeutic protocol is adopted.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Neoplasias , Osteoporose , Humanos , Difosfonatos/efeitos adversos , Conservadores da Densidade Óssea/efeitos adversos , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/tratamento farmacológico , Qualidade de Vida , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Osteoporose/tratamento farmacológico , Neoplasias/tratamento farmacológico
20.
Mol Neurobiol ; 60(8): 4359-4372, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093494

RESUMO

Ischemic stroke is the leading cause of death and disability. Although stroke mainly affects aged individuals, animal research is mostly one on young rodents. Here, we examined the development of ischemic injury in young (9-12-week-old) and adult (72-week-old) C57BL/6 and BALB/c mice exposed to 30 min of intraluminal middle cerebral artery occlusion (MCAo). Post-ischemic reperfusion did not differ between young and adult mice. Ischemic injury assessed by infarct area and blood-brain barrier (BBB) integrity assessed by IgG extravasation analysis was smaller in adult compared with young mice. Microvascular viability and neuronal survival assessed by CD31 and NeuN immunohistochemistry were higher in adult than young mice. Tissue protection was associated with stronger activation of cell survival pathways in adult than young mice. Microglial/macrophage accumulation and activation assessed by F4/80 immunohistochemistry were more restricted in adult than young mice, and pro- and anti-inflammatory cytokine and chemokine responses were reduced by aging. By means of liquid chromatography-mass spectrometry, we identified a hitherto unknown proteome profile comprising the upregulation of glycogen degradation-related pathways and the downregulation of mitochondrial dysfunction-related pathways, which distinguished post-ischemic responses of the aged compared with the young brain. Our study suggests that aging increases the brain's resilience against ischemic injury.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Camundongos , Animais , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/metabolismo , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Encéfalo/metabolismo , Traumatismo por Reperfusão/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA