RESUMO
We have previously demonstrated that neuroinflammation by the adaptive immune system acts as a robust and targetable disease amplifier in a mouse model of Spastic Paraplegia, type 11 (SPG11), a complicated form of Hereditary Spastic Paraplegia (HSP). While we identified an impact of neuroinflammation on distinct neuropathological changes and gait performance, neuropsychological features, typical and clinically highly relevant symptoms of complicated HSPs, were not addressed. Here we show that the corresponding SPG11 mouse model shows distinct behavioral abnormalities, particularly related to social behavior thus partially reflecting the neuropsychological changes in patients. We provide evidence that some behavioral abnormalities can be mitigated by genetic inactivation of the adaptive immune system. Translating this into a clinically applicable approach, we show that treatment with the established immunomodulators fingolimod or teriflunomide significantly attenuates distinct behavioral abnormalities, with the most striking effect on social behavior. This study links neuroinflammation to behavioral abnormalities in a mouse model of SPG11 and may thus pave the way for using immunomodulators as a treatment approach for SPG11 and possibly other complicated forms of HSP with neuropsychological involvement.
RESUMO
Anxiety disorders and depression are common comorbidities in cardiac patients. Mice lacking the serotonin transporter (5-HTT) exhibit increased anxiety-like behavior. However, the role of 5-HTT deficiency on cardiac aging, and on healing and remodeling processes after myocardial infarction (MI), remains unclear. Cardiological evaluation of experimentally naïve male mice revealed a mild cardiac dysfunction in ≥4-month-old 5-HTT knockout (-/-) animals. Following induction of chronic cardiac dysfunction (CCD) by MI vs. sham operation 5-HTT-/- mice with infarct sizes >30% experienced 100% mortality, while 50% of 5-HTT+/- and 37% of 5-HTT+/+ animals with large MI survived the 8-week observation period. Surviving (sham and MI < 30%) 5-HTT-/- mutants displayed reduced exploratory activity and increased anxiety-like behavior in different approach-avoidance tasks. However, CCD failed to provoke a depressive-like behavioral response in either 5-Htt genotype. Mechanistic analyses were performed on mice 3 days post-MI. Electrocardiography, histology and FACS of inflammatory cells revealed no abnormalities. However, gene expression of inflammation-related cytokines (TGF-ß, TNF-α, IL-6) and MMP-2, a protein involved in the breakdown of extracellular matrix, was significantly increased in 5-HTT-/- mice after MI. This study shows that 5-HTT deficiency leads to age-dependent cardiac dysfunction and disrupted early healing after MI probably due to alterations of inflammatory processes in mice.
RESUMO
The serotonin transporter (5-HTT) is a key molecule of serotoninergic neurotransmission and target of many anxiolytics and antidepressants. In humans, 5-HTT gene variants resulting in lower expression levels are associated with behavioral traits of anxiety. Furthermore, functional magnetic resonance imaging (fMRI) studies reported increased cerebral blood flow (CBF) during resting state (RS) and amygdala hyperreactivity. 5-HTT deficient mice as an established animal model for anxiety disorders seem to be well suited for investigating amygdala (re-)activity in an fMRI study. We investigated wildtype (5-HTT+/+), heterozygous (5-HTT+/-), and homozygous 5-HTT-knockout mice (5-HTT-/-) of both sexes in an ultra-high-field 17.6 Tesla magnetic resonance scanner. CBF was measured with continuous arterial spin labeling during RS, stimulation state (SS; with odor of rats as aversive stimulus), and post-stimulation state (PS). Subsequently, post mortem c-Fos immunohistochemistry elucidated neural activation on cellular level. The results showed that in reaction to the aversive odor CBF in total brain and amygdala of all mice significantly increased. In male 5-HTT+/+ mice amygdala RS CBF levels were found to be significantly lower than in 5-HTT+/- mice. From RS to SS 5-HTT+/+ amygdala perfusion significantly increased compared to both 5-HTT+/- and 5-HTT-/- mice. Perfusion level changes of male mice correlated with the density of c-Fos-immunoreactive cells in the amygdaloid nuclei. In female mice the perfusion was not modulated by the 5-Htt-genotype, but by estrous cycle stages. We conclude that amygdala reactivity is modulated by the 5-Htt genotype in males. In females, gonadal hormones have an impact which might have obscured genotype effects. Furthermore, our results demonstrate experimental support for the tonic model of 5-HTTLPR function.
Assuntos
Tonsila do Cerebelo/irrigação sanguínea , Ansiedade/diagnóstico por imagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/genética , Circulação Cerebrovascular , Modelos Animais de Doenças , Feminino , Hormônios Gonadais/metabolismo , Homozigoto , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Ratos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Caracteres SexuaisRESUMO
Background and Purpose- Ischemic stroke is one of the leading causes of disability and death. The principal goal of acute stroke treatment is the recanalization of the occluded cerebral arteries, which is, however, only effective in a very narrow time window. Therefore, neuroprotective treatments that can be combined with recanalization strategies are needed. Calcium overload is one of the major triggers of neuronal cell death. We have previously shown that capacitative Ca2+ entry, which is triggered by the depletion of intracellular calcium stores, contributes to ischemia-induced calcium influx in neurons, but the responsible Ca2+ channel is not known. Methods- Here, we have generated mice lacking the calcium channel subunit Orai2 and analyzed them in experimental stroke. Results- Orai2-deficient mice were protected from ischemic neuronal death both during acute ischemia under vessel occlusion and during ischemia/reperfusion upon successful recanalization. Calcium signals induced by calcium store depletion or oxygen/glucose deprivation were significantly diminished in Orai2-deficient neurons demonstrating that Orai2 is a central mediator of neuronal capacitative Ca2+ entry and is involved in calcium overload during ischemia. Conclusions- Our experimental data identify Orai2 as an attractive target for pharmaceutical intervention in acute stroke.
Assuntos
Isquemia Encefálica , Sinalização do Cálcio , Cálcio/metabolismo , Neuroproteção , Proteína ORAI2/deficiência , Acidente Vascular Cerebral , Doença Aguda , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Morte Celular , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Proteína ORAI2/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controleRESUMO
Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2 -/-) and heterozygous (Tph2 +/-) mice, and their wildtype littermates (Tph2 +/+) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2 -/- mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2 +/- mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2 +/- mice when compared to their Tph2 -/- littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability.
RESUMO
Brain serotonin (5-hydroxytryptamine, 5-HT) system dysfunction is implicated in exaggerated fear responses triggering various anxiety-, stress-, and trauma-related disorders. However, the underlying mechanisms are not well understood. Here, we investigated the impact of constitutively inactivated 5-HT synthesis on context-dependent fear learning and extinction using tryptophan hydroxylase 2 (Tph2) knockout mice. Fear conditioning and context-dependent fear memory extinction paradigms were combined with c-Fos imaging and electrophysiological recordings in the dorsal hippocampus (dHip). Tph2 mutant mice, completely devoid of 5-HT synthesis in brain, displayed accelerated fear memory formation and increased locomotor responses to foot shock. Furthermore, recall of context-dependent fear memory was increased. The behavioral responses were associated with increased c-Fos expression in the dHip and resistance to foot shock-induced impairment of hippocampal long-term potentiation (LTP). In conclusion, increased context-dependent fear memory resulting from brain 5-HT deficiency involves dysfunction of the hippocampal circuitry controlling contextual representation of fear-related behavioral responses.
RESUMO
Adhesion G protein-coupled receptor L3 (ADGRL3, LPHN3) has putative roles in neuronal migration and synapse function. Various polymorphisms in ADGRL3 have been linked with an increased risk of attention deficit/hyperactivity disorder (ADHD). In this study, we examined the characteristics of Adgrl3-deficient mice in multiple behavioural domains related to ADHD: locomotive activity, impulsivity, gait, visuospatial and recognition memory, sociability, anxiety-like behaviour and aggression. Additionally, we investigated the effect of Adgrl3-depletion at the transcriptomic level by RNA-sequencing three ADHD-relevant brain regions: prefrontal cortex (PFC), hippocampus and striatum. Adgrl3-/- mice show increased locomotive activity across all tests and subtle gait abnormalities. These mice also show impairments across spatial memory and learning domains, alongside increased levels of impulsivity and sociability with decreased aggression. However, these alterations were absent in Adgrl3+/- mice. Across all brain regions tested, the numbers of genes found to exhibit differential expression was relatively small, indicating a specific pathway of action, rather than a broad neurobiological perturbation. Gene-set analysis of differential expression in the PFC detected a number of ADHD-relevant pathways including dopaminergic synapses as well as cocaine and amphetamine addiction. The Slc6a3 gene coding for the dopamine transporter was the most dysregulated gene in the PFC. Unexpectedly, several neurohormone/peptides which are typically only expressed in the hypothamalus were found to be dysregulated in the striatum. Our study further validates Adgrl3 constitutive knockout mice as an experimental model of ADHD while providing neuroanatomical targets for future studies involving ADGRL3 modified models. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.
Assuntos
Agressão/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Comportamento Impulsivo/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Peptídeos/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genéticaRESUMO
OBJECTIVE: Cadherin-13 (CDH13), a member of the calcium-dependent cell adhesion molecule family, has been linked to neurodevelopmental disorders, including autism spectrum (ASD) and attention-deficit/hyperactivity (ADHD) disorders, but also to depression. In the adult brain, CDH13 expression is restricted e.g. to the presynaptic compartment of inhibitory GABAergic synapses in the hippocampus and Cdh13 knockout mice show an increased inhibitory drive onto hippocampal CA1 pyramidal neurons, leading to a shift in excitatory/inhibitory balance. CDH13 is also moderating migration of serotonergic neurons in the dorsal raphe nucleus, establishing projections preferentially to the thalamus and cerebellum during brain development. Furthermore, CDH13 is upregulated by chronic stress as well as in depression, suggesting a role in early-life adaptation to stressful experience. Here, we therefore investigated the interaction between Cdh13 variation and neonatal maternal separation (MS) in mice. METHODS: Male and female wild-type (Cdh13+/+), heterozygous (Cdh13+/-) and homozygous (Cdh13-/-) knockout mice exposed to MS, or daily handling as control, were subjected to a battery of behavioural tests to assess motor activity, learning and memory as well as anxiety-like behaviour. A transcriptome analysis of the hippocampus was performed in an independent cohort of mice which was exposed to MS or handling, but remained naïve for behavioural testing. RESULTS: MS lead to increased anxiety-like behaviour in Cdh13-/- mice compared to the other two MS groups. Cdh13-/- mice showed a context-dependent effect on stress- and anxiety-related behaviour, impaired extinction learning following contextual fear conditioning and decreased impulsivity, as well as a mild decrease in errors in the Barnes maze and reduced risk-taking in the light-dark transition test after MS. We also show sex differences, with increased locomotor activity in female Cdh13-/- mice, but unaltered impulsivity and activity in male Cdh13-/- mice. Transcriptome analysis revealed several pathways associated with cell surface/adhesion molecules to be altered following Cdh13 deficiency, together with an influence on endoplasmic reticulum function. CONCLUSION: MS resulted in increased stress resilience, increased exploration and an overall anxiolytic behavioural phenotype in male Cdh13+/+ and Cdh13+/- mice. Cdh13 deficiency, however, obliterated most of the effects caused by early-life stress, with Cdh13-/- mice exhibiting delayed habituation, no reduction of anxiety-like behaviour and decreased fear extinction. Our behavioural findings indicate a role of CDH13 in the programming of and adaptation to early-life stress. Finally, our transcriptomic data support the view of CDH13 as a neuroprotective factor as well as a mediator in cell-cell interactions, with an impact on synaptic plasticity.
Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Caderinas/deficiência , Estresse Psicológico/metabolismo , Animais , Ansiedade/metabolismo , Caderinas/genética , Comportamento Exploratório/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Medo/psicologia , Feminino , Habituação Psicofisiológica/fisiologia , Masculino , Privação Materna , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Distribuição Aleatória , Resiliência Psicológica , TranscriptomaRESUMO
Anxiety disorders represent one of the most prevalent mental disorders in today's society and early adversity has been identified as major contributor to anxiety-related pathologies. Serotonin (5-hydroxytryptamine, 5-HT) is implicated in mediating the effects of early-life events on anxiety-like behaviours. In order to further elucidate the interaction of genetic predisposition and adversity in early, developmental stages on anxiety-related behaviours, the current study employed tryptophan hydroxylase 2 (Tph2)-deficient female mice, as a model for lifelong brain 5-HT synthesis deficiency. Offspring of this line were exposed to maternal separation (MS) and tested, in the open-field (OF) or the dark-light box (DLB). Subsequently, neural activity was assessed, using c-Fos immunohistochemistry. In the DLB, MS rescued the observed decrease in activity in the light compartment of homozygous Tph2-deficient mice and furthermore increased the incidence of escape-related jumps in animals of the same genotype. In the OF, MS increased escape-related behaviours in homo- and heterozygous Tph2-deficient offspring. On the neural level, both behavioural tests evoked a distinct activation pattern, as shown by c-Fos immunohistochemistry. Exposure to the DLB resulted in Tph2-dependent activation of paraventricular nucleus and basolateral amygdala, while OF exposure led to a specific activation in lateral amygdala of maternally separated animals and a Tph2 genotype- and MS-dependent activation of the ventrolateral and dorsolateral periaqueductal grey. Taken together, our findings suggest that MS promotes active responses to aversive stimuli, dependent on the availability of brain 5-HT. These effects might be mediated by the distinct activation of anxiety-relevant brain regions, due to the behavioural testing.
Assuntos
Ansiedade/fisiopatologia , Privação Materna , Triptofano Hidroxilase/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Feminino , Camundongos , Camundongos Knockout , Núcleo Hipotalâmico Paraventricular/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Serotonina/deficiência , Serotonina/fisiologia , Triptofano Hidroxilase/genéticaRESUMO
Juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease) caused by mutations in the CLN3 gene is the most prevalent inherited neurodegenerative disease in childhood resulting in widespread central nervous system dysfunction and premature death. The consequences of CLN3 mutation on the progression of the disease, on neuronal transmission, and on central nervous network dysfunction are poorly understood. We used Cln3 knockout (Cln3Δex1-6) mice and found increased anxiety-related behavior and impaired aversive learning as well as markedly affected motor function including disordered coordination. Patch-clamp and loose-patch recordings revealed severely affected inhibitory and excitatory synaptic transmission in the amygdala, hippocampus, and cerebellar networks. Changes in presynaptic release properties may result from dysfunction of CLN3 protein. Furthermore, loss of calbindin, neuropeptide Y, parvalbumin, and GAD65-positive interneurons in central networks collectively support the hypothesis that degeneration of GABAergic interneurons may be the cause of supraspinal GABAergic disinhibition.
Assuntos
Tonsila do Cerebelo/fisiopatologia , Cerebelo/fisiopatologia , Hipocampo/fisiopatologia , Lipofuscinoses Ceroides Neuronais/patologia , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Transmissão Sináptica , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Chaperonas Moleculares , Rede Nervosa/fisiopatologia , Técnicas de Patch-ClampRESUMO
Ribosomal s6 kinase 2 is a growth factor activated serine/threonine kinase and member of the ERK signaling pathway. Mutations in the Rsk2 gene cause Coffin-Lowry syndrome, a rare syndromic form of intellectual disability. The Rsk2 KO mouse model was shown to have learning and memory defects. We focused on the investigation of the emotional behavioral phenotype of Rsk2 KO mice mainly in the IntelliCage. They exhibited an anti-depressive, sucrose reward seeking phenotype and showed reduced anxiety. Spontaneous activity was increased in some conventional tests. However, KO mice did not show defects in place learning, working memory and motor impulsivity. In addition, we found changes of the monoaminergic system in HPLC and qRT-PCR experiments. Taken together, RSK2 not only plays a role in cognitive processes but also in emotional and reward-related behaviors.
Assuntos
Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Ansiedade/genética , Síndrome de Coffin-Lowry/genética , Depressão/genética , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , FenótipoRESUMO
AIMS: Both anxiety and depression are common and independent outcome predictors in patients after myocardial infarction (MI). However, it is unclear whether and how anti-depressants influence remodeling after MI. Thus, we studied cardiac remodeling in mice after experimental MI under treatment with citalopram, a selective serotonin reuptake inhibitor widely used as antidepressant. METHODS AND RESULTS: Treatment with citalopram versus saline was applied via osmotic pump after coronary artery ligation. Two different groups were studied: early treatment during the healing phase (starting immediately after surgery), or late treatment in the remodeling phase (starting 7days after surgery). Late treatment did not change mortality or left ventricular remodeling after MI over the period of 6weeks. However, in the early treatment group mortality was increased in citalopram-treated mice predominantly due to left ventricle rupture without differences in infarct size. Remodeling 4weeks after MI was not altered by the treatment. Neither infiltration of inflammatory cells, as determined by FACS analysis of myocardial tissue, nor mRNA-expression of inflammatory cytokines changed 3days after MI in the early treatment group. However, extracellular matrix functioning was altered: There was a significant increase of MMP13 in citalopram treated animals after MI. Pretreatment with the MMP inhibitor PD 166793 prevented left ventricular ruptures and demonstrated a tendency to improved survival after citalopram treatment. CONCLUSIONS: Treatment with antidepressant citalopram in the acute but not in the late phase after MI significantly increased mortality in mice by disturbing early healing. Pharmacological MMP inhibition partially reversed the deleterious effects of citalopram.
Assuntos
Citalopram/efeitos adversos , Ruptura Cardíaca Pós-Infarto/etiologia , Ruptura Cardíaca Pós-Infarto/mortalidade , Ventrículos do Coração/patologia , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Tempo para o Tratamento , Animais , Biópsia , Citalopram/administração & dosagem , Colágeno/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Ruptura Cardíaca Pós-Infarto/diagnóstico , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Masculino , Inibidores de Metaloproteinases de Matriz/administração & dosagem , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz/metabolismo , Camundongos , Mortalidade , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Remodelação Ventricular/efeitos dos fármacosRESUMO
RATIONALE: While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. OBJECTIVE: Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. RESULTS: Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2(-/-)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2(-/-) males displayed increased impulsivity and high aggressiveness. Tph2(-/-) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2(-/-) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. CONCLUSIONS: Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality.
Assuntos
Química Encefálica/genética , Emoções , Serotonina/biossíntese , Estresse Psicológico/metabolismo , Triptofano Hidroxilase/genética , Animais , Ansiedade/psicologia , Comportamento Animal , Peso Corporal , Doença Crônica , Depressão/psicologia , Medo , Feminino , Interação Gene-Ambiente , Sistema Hipotálamo-Hipofisário , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Sistemas Neurossecretores/fisiopatologia , Sistema Hipófise-Suprarrenal , Caracteres SexuaisRESUMO
BACKGROUND: Depression and anxiety are common and independent outcome predictors in patients with chronic heart failure (CHF). However, it is unclear whether CHF causes depression. Thus, we investigated whether mice develop anxiety- and depression-like behavior after induction of ischemic CHF by myocardial infarction (MI). METHODS AND RESULTS: In order to assess depression-like behavior, anhedonia was investigated by repeatedly testing sucrose preference for 8 weeks after coronary artery ligation or sham operation. Mice with large MI and increased left ventricular dimensions on echocardiography (termed CHF mice) showed reduced preference for sucrose, indicating depression-like behavior. 6 weeks after MI, mice were tested for exploratory activity, anxiety-like behavior and cognitive function using the elevated plus maze (EPM), light-dark box (LDB), open field (OF), and object recognition (OR) tests. In the EPM and OF, CHF mice exhibited diminished exploratory behavior and motivation despite similar movement capability. In the OR, CHF mice had reduced preference for novelty and impaired short-term memory. On histology, CHF mice had unaltered overall cerebral morphology. However, analysis of gene expression by RNA-sequencing in prefrontal cortical, hippocampal, and left ventricular tissue revealed changes in genes related to inflammation and cofactors of neuronal signal transduction in CHF mice, with Nr4a1 being dysregulated both in prefrontal cortex and myocardium after MI. CONCLUSIONS: After induction of ischemic CHF, mice exhibited anhedonic behavior, decreased exploratory activity and interest in novelty, and cognitive impairment. Thus, ischemic CHF leads to distinct behavioral changes in mice analogous to symptoms observed in humans with CHF and comorbid depression.
RESUMO
The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in naïve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM.
Assuntos
Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estresse Fisiológico/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Corticosterona/sangue , Regulação da Expressão Gênica , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/biossíntese , Proteínas da Membrana Plasmática de Transporte de Serotonina/genéticaRESUMO
Attention-deficit/hyperactivity disorder (ADHD) is a common, early onset and enduring neuropsychiatric disorder characterized by developmentally inappropriate inattention, hyperactivity, increased impulsivity and motivational/emotional dysregulation with similar prevalence rates throughout different cultural settings. Persistence of ADHD into adulthood is associated with considerable risk for co-morbidities such as depression and substance use disorder. Although the substantial heritability of ADHD is well documented the etiology is characterized by a complex coherence of genetic and environmental factors rendering identification of risk genes difficult. Genome-wide linkage as well as single nucleotide polymorphism (SNP) and copy-number variant (CNV) association scans recently allow to reliably define aetiopathogenesis-related genes. A considerable number of novel ADHD risk genes implicate biological processes involved in neurite outgrowth and axon guidance. Here, we focus on the gene encoding Cadherin-13 (CDH13), a cell adhesion molecule which was replicably associated with liability to ADHD and related neuropsychiatric conditions. Based on its unique expression pattern in the brain, we discuss the molecular structure and neuronal mechanisms of Cadherin-13 in relation to other cadherins and the cardiovascular system. An appraisal of various Cadherin-13-modulated signaling pathways impacting proliferation, migration and connectivity of specific neurons is also provided. Finally, we develop an integrative hypothesis of the mechanisms in which Cadherin-13 plays a central role in the regulation of brain network development, plasticity and function. The review concludes with emerging concepts about alterations in Cadherin-13 signaling contributing to the pathophysiology of neurodevelopmental disorders.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Encéfalo/metabolismo , Caderinas/metabolismo , Variação Genética , Modelos Biológicos , Rede Nervosa/metabolismo , Neurogênese , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Encéfalo/patologia , Caderinas/genética , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Predisposição Genética para Doença , Humanos , Rede Nervosa/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Neuritos/patologia , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais , Transmissão SinápticaRESUMO
The comprehensive and stress-free assessment of various aspects of learning and memory is a prerequisite to evaluate mouse models for neuropsychiatric disorders such as Alzheimer's disease or attention deficit/hyperactivity disorder (ADHD). COGITAT is an automated holeboard system allowing simultaneous assessment of spatial working and reference-memory performance which we have adapted in this study to enable its usage with mice. The holeboard apparatus consists of an open-field chamber with a 25-hole floor insert, each hole being monitored by infrared light beams, located on three different levels, allowing the distinction between visits of holes, i.e. the animal reaches the bottom of the hole, or inspections, which means only superficial exploration of the hole. Across trials, animals learn a pattern of five baited holes. Here, we show that C57BL/6 mice readily acquire this task within 5 days when submitted to six trials per day. A number of individual parameters - overall exploratory activity, number of visits into or inspections of holes, number of baited, unbaited, or previously baited holes visited or inspected, reinspections of or revisits into any holes, number of pellets eaten, time to find pellets, and reference and working memory errors-are obtained simultaneously and results are immediately available after the end of each experiment. The muscarinic antagonist scopolamine impaired task performance, while the cognitive enhancer metrifonate (an acetylcholinesterase inhibitor) reduced error rates. Overall, our data indicate that this spatial learning task will be useful to characterize spatial memory in various genetic or pharmacological mouse models.