Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1296558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094629

RESUMO

Coronaviruses are the causative agents of several recent outbreaks, including the COVID-19 pandemic. One therapeutic approach is blocking viral binding to the host receptor. As binding largely depends on electrostatic interactions, we hypothesized possible inhibition of viral infection through application of electric fields, and tested the effectiveness of Tumor Treating Fields (TTFields), a clinically approved cancer treatment based on delivery of electric fields. In preclinical models, TTFields were found to inhibit coronavirus infection and replication, leading to lower viral secretion and higher cell survival, and to formation of progeny virions with lower infectivity, overall demonstrating antiviral activity. In a pilot clinical study (NCT04953234), TTFields therapy was safe for patients with severe COVID-19, also demonstrating preliminary effectiveness data, that correlated with higher device usage.

2.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902447

RESUMO

Tumor Treating Fields (TTFields) were incorporated into the treatment of glioblastoma, the most malignant brain tumor, after showing an effect on progression-free and overall survival in a phase III clinical trial. The combination of TTFields and an antimitotic drug might further improve this approach. Here, we tested the combination of TTFields with AZD1152, an Aurora B kinase inhibitor, in primary cultures of newly diagnosed (ndGBM) and recurrent glioblastoma (rGBM). AZD1152 concentration was titrated for each cell line and 5-30 nM were used alone or in addition to TTFields (1.6 V/cm RMS; 200 kHz) applied for 72 h using the inovitro™ system. Cell morphological changes were visualized by conventional and confocal laser microscopy. The cytotoxic effects were determined by cell viability assays. Primary cultures of ndGBM and rGBM varied in p53 mutational status; ploidy; EGFR expression and MGMT-promoter methylation status. Nevertheless; in all primary cultures; a significant cytotoxic effect was found following TTFields treatment alone and in all but one, a significant effect after treatment with AZD1152 alone was also observed. Moreover, in all primary cultures the combined treatment had the most pronounced cytotoxic effect in parallel with morphological changes. The combined treatment of TTFields and AZD1152 led to a significant reduction in the number of ndGBM and rGBM cells compared to each treatment alone. Further evaluation of this approach, which has to be considered as a proof of concept, is warranted, before entering into early clinical trials.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Aurora Quinase B/metabolismo , Recidiva Local de Neoplasia , Antineoplásicos/farmacologia
3.
STAR Protoc ; 3(2): 101246, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35368806

RESUMO

Tumor Treating Fields (TTFields) are an FDA-approved anticancer treatment using alternating electric fields. Here, we present a protocol to perform live-cell imaging (LCI) of cells during TTFields treatment with the Inovitro LiveTM system. The setup we describe dissipates TTFields-related heat production and can be used in conjunction with any LCI-compatible microscope setup. This approach will enable further elucidation of TTFields' mechanism of action at the molecular level and facilitate the development of promising combination strategies.


Assuntos
Terapia por Estimulação Elétrica , Neoplasias , Terapia Combinada , Terapia por Estimulação Elétrica/métodos , Humanos , Neoplasias/diagnóstico por imagem
4.
Lung Cancer ; 160: 99-110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482104

RESUMO

OBJECTIVES: Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields with antimitotic effects on cancerous cells. TTFields concomitant with pemetrexed and a platinum agent are approved in the US and EU as first line therapy for unresectable, locally advanced or metastatic malignant pleural mesothelioma (MPM). The goal of the current study was to characterize the mechanism of action of TTFields in MPM cell lines and animal models. METHODS: Human MPM cell lines MSTO-211H and NCI-H2052 were treated with TTFields to determine the frequency that elicits maximal cytotoxicity. The effect of TTFields on DNA damage and repair, and the cytotoxic effect of TTFields in combination with cisplatin and/or pemetrexed were examined. Efficacy of TTFields concomitant with cisplatin and pemetrexed was evaluated in orthotopic IL-45 and subcutaneous RN5 murine models. RESULTS: TTFields at a frequency of 150 kHz demonstrated the highest cytotoxicity to MPM cells. Application of 150 kHz TTFields resulted in increased formation of DNA double strand breaks, elevated expression of DNA damage induced cell cycle arrest proteins, and reduced expression of Fanconi Anemia (FA)-BRCA DNA repair pathway proteins. Co-treatment of TTFields with cisplatin or pemetrexed significantly increased treatment efficacy versus each modality alone, with additivity and synergy exhibited by the TTFields-pemetrexed and TTFields-cisplatin combinations, respectively. In animal models, tumor volume was significantly lower for the TTFields-cisplatin-pemetrexed combination compared to control, accompanied by increased DNA damage within the tumor. CONCLUSION: This research demonstrated that the efficacy of TTFields for the treatment of MPM is associated with reduced expression of FA-BRCA pathway proteins and increased DNA damage. This mechanism of action is consistent with the observed synergism for TTFields-cisplatin vs additivity for TTFields-pemetrexed, as cisplatin-induced DNA damage is repaired via the FA-BRCA pathway.


Assuntos
Anemia de Fanconi , Neoplasias Pulmonares , Mesotelioma Maligno , Animais , Cisplatino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Pemetrexede
5.
Cancer Immunol Immunother ; 69(7): 1191-1204, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32144446

RESUMO

Tumor-treating fields (TTFields) are alternating electric fields in a specific frequency range (100-300 kHz) delivered to the human body through transducer arrays. In this study, we evaluated whether TTFields-mediated cell death can elicit antitumoral immunity and hence would be effectively combined with anti-PD-1 therapy. We demonstrate that in TTFields-treated cancer cells, damage-associated molecular patterns including high-mobility group B1 and adenosine triphosphate are released and calreticulin is exposed on the cell surface. Moreover, we show that TTFields treatment promotes the engulfment of cancer cells by dendritic cells (DCs) and DCs maturation in vitro, as well as recruitment of immune cells in vivo. Additionally, our study demonstrates that the combination of TTFields with anti-PD-1 therapy results in a significant decline of tumor volume and increase in the percentage of tumor-infiltrating leukocytes in two tumor models. In orthotopic lung tumors, these infiltrating leukocytes, specifically macrophages and DCs, showed elevated expression of PD-L1. Compatibly, cytotoxic T-cells isolated from these tumors demonstrated increased production of IFN-γ. In colon cancer tumors, T-cells infiltration was significantly increased following long treatment duration with TTFields plus anti-PD-1. Collectively, our results suggest that TTFields therapy can induce anticancer immune response. Furthermore, we demonstrate robust efficacy of concomitant application of TTFields and anti-PD-1 therapy. These data suggest that integrating TTFields with anti-PD-1 therapy may further enhance antitumor immunity, hence achieve better tumor control.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Carcinoma Hepatocelular/terapia , Carcinoma Pulmonar de Lewis/terapia , Terapia por Estimulação Elétrica/métodos , Morte Celular Imunogênica , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Apoptose , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Proliferação de Células , Terapia Combinada , Feminino , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell Death Dis ; 9(11): 1074, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341282

RESUMO

Tumor Treating Fields (TTFields), an approved treatment modality for glioblastoma, are delivered via non-invasive application of low-intensity, intermediate-frequency, alternating electric fields. TTFields application leads to abnormal mitosis, aneuploidy, and increased cell granularity, which are often associated with enhancement of autophagy. In this work, we evaluated whether TTFields effected the regulation of autophagy in glioma cells. We found that autophagy is upregulated in glioma cells treated with TTFields as demonstrated by immunoblot analysis of the lipidated microtubule-associated protein light chain 3 (LC3-II). Fluorescence and transmission electron microscopy demonstrated the presence of LC3 puncta and typical autophagosome-like structures in TTFields-treated cells. Utilizing time-lapse microscopy, we found that the significant increase in the formation of LC3 puncta was specific to cells that divided during TTFields application. Evaluation of selected cell stress parameters revealed an increase in the expression of the endoplasmic reticulum (ER) stress marker GRP78 and decreased intracellular ATP levels, both of which are indicative of increased proteotoxic stress. Pathway analysis demonstrated that TTFields-induced upregulation of autophagy is dependent on AMP-activated protein kinase (AMPK) activation. Depletion of AMPK or autophagy-related protein 7 (ATG7) inhibited the upregulation of autophagy in response to TTFields, as well as sensitized cells to the treatment, suggesting that cancer cells utilize autophagy as a resistance mechanism to TTFields. Combining TTFields with the autophagy inhibitor chloroquine (CQ) resulted in a significant dose-dependent reduction in cell growth compared with either TTFields or CQ alone. These results suggest that dividing cells upregulate autophagy in response to aneuploidy and ER stress induced by TTFields, and that AMPK serves as a key regulator of this process.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Neoplasias Encefálicas/patologia , Estimulação Elétrica/métodos , Glioblastoma/patologia , Regulação para Cima , Trifosfato de Adenosina/metabolismo , Aneuploidia , Animais , Autofagossomos/metabolismo , Proteína 7 Relacionada à Autofagia/antagonistas & inibidores , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia por Estimulação Elétrica , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Glioblastoma/terapia , Proteínas de Choque Térmico/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Ratos , Fator A de Crescimento do Endotélio Vascular
7.
Radiat Oncol ; 12(1): 206, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29284495

RESUMO

BACKGROUND: Tumor Treating Fields (TTFields) are an anti-neoplastic treatment modality delivered via application of alternating electric fields using insulated transducer arrays placed directly on the skin in the region surrounding the tumor. A Phase 3 clinical trial has demonstrated the effectiveness of continuous TTFields application in patients with glioblastoma during maintenance treatment with Temozolomide. The goal of this study was to evaluate the efficacy of combining TTFields with radiation treatment (RT) in glioma cells. We also examined the effect of TTFields transducer arrays on RT distribution in a phantom model and the impact on rat skin toxicity. METHODS: The efficacy of TTFields application after induction of DNA damage by RT or bleomycin was tested in U-118 MG and LN-18 glioma cells. The alkaline comet assay was used to measure repair of DNA lesions. Repair of DNA double strand breaks (DSBs) were assessed by analyzing γH2AX or Rad51 foci. DNA damage and repair signaled by the activation pattern of phospho-ATM (pS1981) and phospho-DNA-PKcs (pS2056) was evaluated by immunoblotting. The absorption of the RT energy by transducer arrays was measured by applying RT through arrays placed on a solid-state phantom. Skin toxicities were tested in rats irradiated daily through the arrays with 2Gy (total dose of 20Gy). RESULTS: TTFields synergistically enhanced the efficacy of RT in glioma cells. Application of TTFields to irradiated cells impaired repair of irradiation- or chemically-induced DNA damage, possibly by blocking homologous recombination repair. Transducer arrays presence caused a minor reduction in RT intensity at 20 mm and 60 mm below the arrays, but led to a significant increase in RT dosage at the phantom surface jeopardizing the "skin sparing effect". Nevertheless, transducer arrays placed on the rat skin during RT did not lead to additional skin reactions. CONCLUSIONS: Administration of TTFields after RT increases glioma cells treatment efficacy possibly by inhibition of DNA damage repair. These preclinical results support the application of TTFields therapy immediately after RT as a viable regimen to enhance RT outcome. Phantom measurements and animal models imply that it may be possible to leave the transducer arrays in place during RT without increasing skin toxicities.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Terapia por Estimulação Elétrica , Glioma/radioterapia , Imagens de Fantasmas , Dermatopatias/prevenção & controle , Animais , Glioma/genética , Glioma/patologia , Humanos , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
8.
J Vis Exp ; (123)2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28518093

RESUMO

Tumor Treating Fields (TTFields) are an effective treatment modality delivered via the continuous, noninvasive application of low-intensity (1-3 V/cm), alternating electric fields in the frequency range of several hundred kHz. The study of TTFields in tissue culture is carried out using the TTFields in vitro application system, which allows for the application of electric fields of varying frequencies and intensities to ceramic Petri dishes with a high dielectric constant (Ɛ > 5,000). Cancerous cell lines plated on coverslips at the bottom of the ceramic Petri dishes are subjected to TTFields delivered in two orthogonal directions at various frequencies to facilitate treatment outcome tests, such as cell counts and clonogenic assays. The results presented in this report demonstrate that the optimal frequency of the TTFields with respect to both cell counts and clonogenic assays is 200 kHz for both ovarian and glioma cells.


Assuntos
Ensaio de Unidades Formadoras de Colônias/métodos , Terapia por Estimulação Elétrica , Eletricidade , Glioma/terapia , Neoplasias Ovarianas/terapia , Protocolos Antineoplásicos , Linhagem Celular Tumoral , Feminino , Humanos , Resultado do Tratamento
9.
Int J Cancer ; 139(12): 2850-2858, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27561100

RESUMO

Long-term survival rates for advanced ovarian cancer patients have not changed appreciably over the past four decades; therefore, development of new, effective treatment modalities remains a high priority. Tumor Treating Fields (TTFields), a clinically active anticancer modality utilize low-intensity, intermediate frequency, alternating electric fields. The goal of this study was to evaluate the efficacy of combining TTFields with paclitaxel against ovarian cancer cells in vitro and in vivo. In vitro application of TTFields on human ovarian cancer cell lines led to a significant reduction in cell counts as compared to untreated cells. The effect was found to be frequency and intensity dependent. Further reduction in the number of viable cells was achieved when TTFields treatment was combined with paclitaxel. The in vivo effect of the combined treatment was tested in mice orthotopically implanted with MOSE-LTICv cells. In this model, combined treatment led to a significant reduction in tumor luminescence and in tumor weight as compared to untreated mice. The feasibility of effective local delivery of TTFields to the human abdomen was examined using finite element mesh simulations performed using the Sim4life software. These simulations demonstrated that electric fields intensities inside and in the vicinity of the ovaries of a realistic human computational phantom are about 1 and 2 V/cm pk-pk, respectively, which is within the range of intensities required for TTFields effect. These results suggest that prospective clinical investigation of the combination of TTFields and paclitaxel is warranted.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/terapia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 5: 18046, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26658786

RESUMO

Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells.


Assuntos
Segregação de Cromossomos/fisiologia , Mitose/fisiologia , Neoplasias/patologia , Fuso Acromático/patologia , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Eletricidade , Humanos , Células MCF-7 , Microtúbulos/metabolismo , Microtúbulos/patologia , Neoplasias/metabolismo , Ratos , Ratos Endogâmicos F344 , Tubulina (Proteína)/metabolismo
11.
Semin Oncol ; 41 Suppl 6: S35-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25213867

RESUMO

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths worldwide. Common treatment modalities for NSCLC include surgery, radiotherapy, chemotherapy, and, in recent years, the clinical management paradigm has evolved with the advent of targeted therapies. Despite such advances, the impact of systemic therapies for advanced disease remains modest, and as such, the prognosis for patients with NSCLC remains poor. Standard modalities are not without their respective toxicities and there is a clear need to improve both efficacy and safety for current management approaches. Tumor-treating fields (TTFields) are low-intensity, intermediate-frequency alternating electric fields that disrupt proper spindle microtubule arrangement, thereby leading to mitotic arrest and ultimately to cell death. We evaluated the effects of combining TTFields with standard chemotherapeutic agents on several NSCLC cell lines, both in vitro and in vivo. Frequency titration curves demonstrated that the inhibitory effects of TTFields were maximal at 150 kHz for all NSCLC cell lines tested, and that the addition of TTFields to chemotherapy resulted in enhanced treatment efficacy across all cell lines. We investigated the response of Lewis lung carcinoma and KLN205 squamous cell carcinoma in mice treated with TTFields in combination with pemetrexed, cisplatin, or paclitaxel and compared these to the efficacy observed in mice exposed only to the single agents. Combining TTFields with these therapeutic agents enhanced treatment efficacy in comparison with the respective single agents and control groups in all animal models. Together, these findings suggest that combining TTFields therapy with chemotherapy may provide an additive efficacy benefit in the management of NSCLC.


Assuntos
Adenocarcinoma/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma de Células Escamosas/terapia , Terapia por Estimulação Elétrica , Neoplasias Pulmonares/terapia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Animais , Apoptose , Carcinoma Pulmonar de Lewis/mortalidade , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Cisplatino/administração & dosagem , Terapia Combinada , Glutamatos/administração & dosagem , Guanina/administração & dosagem , Guanina/análogos & derivados , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Paclitaxel/administração & dosagem , Pemetrexede , Taxa de Sobrevida , Resultado do Tratamento , Células Tumorais Cultivadas
12.
Pancreatology ; 14(1): 54-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24555979

RESUMO

OBJECTIVES: Tumor Treating Fields (TTFields) are a non-invasive cancer treatment modality approved for the treatment of patients with recurrent glioblastoma. The present study determined the efficacy and mechanism of action of TTFields in preclinical models of pancreatic cancer. METHODS: The effect of TTFields in vitro was assessed using cell counts, clonogenic assays, cell cycle analysis and analysis of mitotic figures. The effect in vivo effect was studied in the PC1-0 hamster pancreatic cancer model. RESULTS: Application of TTFields in vitro showed a significant decrease in cell count, an increase in cell volume and reduced clonogenicity. Further analysis demonstrated significant increase in the number of abnormal mitotic figures, as well as a decrease in G2-M cell population. In hamsters with orthotopic pancreatic tumors, TTFields significantly reduced tumor volume accompanied by an increase in the frequency of abnormal mitotic events. TTFields efficacy was enhanced both in vitro and in vivo when combined with chemotherapy. CONCLUSIONS: These results provide the first evidence that TTFields serve as an effective antimitotic treatment in preclinical pancreatic cancer models and have a long term negative effect on cancer cell survival. These results make TTFields an attractive candidate for testing in the treatment of patients with pancreatic cancer.


Assuntos
Mitose/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Animais , Linhagem Celular Tumoral , Tamanho Celular/efeitos dos fármacos , Terapia Combinada , Cricetinae , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Eletricidade , Humanos , Masculino , Mesocricetus , Neoplasias Pancreáticas/tratamento farmacológico , Resultado do Tratamento , Ensaio Tumoral de Célula-Tronco , Gencitabina
13.
Antimicrob Agents Chemother ; 54(8): 3212-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20547811

RESUMO

High-frequency, low-intensity electric fields generated by insulated electrodes have previously been shown to inhibit bacterial growth in vitro. In the present study, we tested the effect of these antimicrobial fields (AMFields) on the development of lung infection caused by Pseudomonas aeruginosa in mice. We demonstrate that AMFields (10 MHz) significantly inhibit bacterial growth in vivo, both as a stand-alone treatment and in combination with ceftazidime. In addition, we show that peripheral (skin) heating of about 2 degrees C can contribute to bacterial growth inhibition in the lungs of mice. We suggest that the combination of alternating electric fields, together with the heat produced during their application, may serve as a novel antibacterial treatment modality.


Assuntos
Eletricidade , Pneumopatias/terapia , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos da radiação , Animais , Antibacterianos/uso terapêutico , Ceftazidima/uso terapêutico , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Eletrodos , Feminino , Temperatura Alta , Humanos , Pulmão/microbiologia , Pulmão/patologia , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos ICR , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Resultado do Tratamento
14.
Antimicrob Agents Chemother ; 52(10): 3517-22, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18663026

RESUMO

Weak electric currents generated using conductive electrodes have been shown to increase the efficacy of antibiotics against bacterial biofilms, a phenomenon termed "the bioelectric effect." The purposes of the present study were (i) to find out whether insulated electrodes that generate electric fields without "ohmic" electric currents, and thus are not associated with the formation of metal ions and free radicals, can inhibit the growth of planktonic bacteria and (ii) to define the parameters that are most effective against bacterial growth. The results obtained indicate that electric fields generated using insulated electrodes can inhibit the growth of planktonic Staphylococcus aureus and Pseudomonas aeruginosa and that the effect is amplitude and frequency dependent, with a maximum at 10 MHz. The combined effect of the electric field and chloramphenicol was found to be additive. Several possible mechanisms underlying the observed effect, as well as its potential clinical uses, are discussed.


Assuntos
Eletricidade , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cloranfenicol/administração & dosagem , Eletrodos , Análise de Elementos Finitos , Modelos Biológicos , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Plâncton/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
15.
Chem Biol ; 15(4): 354-62, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18420142

RESUMO

We describe structure-activity relationships that emerged from biophysical data obtained with a library of antimicrobial peptide mimetics composed of 103 oligoacyllysines (OAKs) designed to pin down the importance of hydrophobicity (H) and charge (Q). Based on results obtained with OAKs displaying minimal inhibitory concentration < or = 3 microM, the data indicate that potent inhibitory activity of the gram-negative Escherichia coli and the gram-positive Staphylococcus aureus required a relatively narrow yet distinct window of HQ values where the acyl length played multiple and critical roles, both in molecular organization and in selective activity. Thus, incorporation of long-but not short-acyl chains within a peptide backbone is shown to lead to rigid supramolecular organization responsible for poor antibacterial activity and enhanced hemolytic activity. However, sequence manipulations, including introduction of a tandem lysine motif into the oligomer backbone, enabled disassembly of aggregated OAKs and subsequently revealed tiny, nonhemolytic, yet potent antibacterial derivatives.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Acilação , Sequência de Aminoácidos , Avaliação Pré-Clínica de Medicamentos , Hemólise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA