Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Ecol Evol ; 13(7): 1497-1507, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36250156

RESUMO

Aggregated species occurrence and abundance data from disparate sources are increasingly accessible to ecologists for the analysis of temporal trends in biodiversity. However, sampling biases relevant to any given research question are often poorly explored and infrequently reported; this can undermine statistical inference. In other disciplines, it is common for researchers to complete 'risk-of-bias' assessments to expose and document the potential for biases to undermine conclusions. The huge growth in available data, and recent controversies surrounding their use to infer temporal trends, indicate that similar assessments are urgently needed in ecology.We introduce ROBITT, a structured tool for assessing the 'Risk-Of-Bias In studies of Temporal Trends in ecology'. ROBITT has a similar format to its counterparts in other disciplines: it comprises signalling questions designed to elicit information on the potential for bias in key study domains. In answering these, users will define study inferential goal(s) and relevant statistical target populations. This information is used to assess potential sampling biases across domains relevant to the research question (e.g. geography, taxonomy, environment), and how these vary through time. If assessments indicate biases, then users must clearly describe them and/or explain what mitigating action will be taken.Everything that users need to complete a ROBITT assessment is provided: the tool, a guidance document and a worked example. Following other disciplines, the tool and guidance document were developed through a consensus-forming process across experts working in relevant areas of ecology and evidence synthesis.We propose that researchers should be strongly encouraged to include a ROBITT assessment when publishing studies of biodiversity trends, especially when using aggregated data. This will help researchers to structure their thinking, clearly acknowledge potential sampling issues, highlight where expert consultation is required and provide an opportunity to describe data checks that might go unreported. ROBITT will also enable reviewers, editors and readers to establish how well research conclusions are supported given a dataset combined with some analytical approach. In turn, it should strengthen evidence-based policy and practice, reduce differing interpretations of data and provide a clearer picture of the uncertainties associated with our understanding of reality.

2.
Ecol Evol ; 11(9): 3771-3793, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976774

RESUMO

Biodiversity has undergone a major decline throughout recent decades, particularly in farmland. Agricultural practices are recognized to be an important pressure on farmland biodiversity, and pesticides are suspected to be one of the main causes of this decline in biodiversity. As part of the national plan for reduction of pesticides use (Ecophyto), the French ministry of agriculture launched the 500 ENI (nonintended effects) monitoring program in 2012 in order to assess the unintended effects of agricultural practices, including pesticide use, on biodiversity represented by several taxonomic groups of interest for farmers. This long-term program monitors the biodiversity of nontargeted species (earthworms, plants, coleoptera, and birds), together with a wide range of annual data on agricultural practices (crop rotation, soil tillage, weed control, fertilizers, chemical treatments, etc.). Other parameters (e.g., landscape and climatic characteristics) are also integrated as covariates during the analyses. This monitoring program is expected to improve our understanding of the relative contribution of the different drivers of population and community trends. Here, we present the experience of setting up the 500 ENI network for this ambitious and highly complex monitoring program, as well as the type of data it collects. The issue of data quality control and some first results are discussed. With the aim of being useful to readers who would like to set up similar monitoring schemes, we also address some questions that have arisen following the first five years of the implementation phase of the program.

3.
Ecol Lett ; 24(6): 1178-1186, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33750013

RESUMO

For many species, climate change leads to range shifts that are detectable, but often insufficient to track historical climatic conditions. These lags of species range shifts behind climatic conditions are often coined "climatic debts", but the demographic costs entailed by the word "debt" have not been demonstrated. Here, we used opportunistic distribution data for c. 4000 European plant species to estimate the temporal shifts in climatic conditions experienced by these species and their occupancy trends, over the last 65 years. The resulting negative relationship observed between these two variables provides the first piece of evidence that European plants are already paying a climatic debt in Alpine, Atlantic and Boreal regions. In contrast, plants appear to benefit from a surprising "climatic bonus" in the Mediterranean. We also find that among multiple pressures faced by plants, climate change is now on par with other known drivers of occupancy trends, including eutrophication and urbanisation.


Assuntos
Mudança Climática , Ecossistema , Plantas , Urbanização
4.
Biol Lett ; 15(7): 20190280, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31288688

RESUMO

Latitudinal and altitudinal range shifts in response to climate change have been reported for numerous animal species, especially those with high dispersal capacities. In plants, the impact of climate change on species distribution or community composition has been documented mainly over long periods (decades) and in specific habitats, often forests. Here, we broaden the results of such long-term, focused studies by examining climate-driven changes in plant community composition over a large area (France) encompassing multiple habitat types and over a short period (2009-2017). To this end, we measured mean community thermal preference, calculated as the community-weighted mean of the Ellenberg temperature indicator value, using data from a standardized participatory monitoring scheme. We report a rapid increase in the mean thermal preference of plant communities at national and regional scales, which we relate to climate change. This reshuffling of plant community composition corresponds to a relative increase in the abundance of warm- versus cold-adapted species. However, support for this trend was weaker when considering only the common species, including common annuals. Our results thus suggest for the first time that the response of plant communities to climate change involves subtle changes affecting all species rare and common, which can nonetheless be detected over short time periods. Whether such changes are sufficient to cope with the current climate warming remains to be ascertained.


Assuntos
Mudança Climática , Plantas , Animais , Ecossistema , França , Temperatura
5.
Ann Bot ; 123(2): 327-336, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30351386

RESUMO

Background and Aims: Most theory addressing the evolution of pollen limitation in flowering plants focuses on stochasticity in the relative abundance of plant and pollinator populations affecting trade-offs in resource allocation to ovule production or pollinator attraction vs. seed maturation. Mating system evolution is an underappreciated but potentially widespread additional mechanism for the evolutionary emergence of pollen limitation in animal-pollinated self-compatible plants. Methods: We model individual plant flowering phenologies influencing both pollinator attraction and geitonogamous self-fertilization caused by pollinator movements among flowers within plants, incorporating demographic but not environmental stochasticity. Plant phenology and the resulting pollen limitation are analysed at evolutionarily stable equilibria (ESS). Pollen limitation is measured by two quantities: the proportion of unpollinated flowers and the reduction in maternal fitness caused by inbreeding depression in selfed seeds. Key Results: When pollinators visit multiple flowers per plant, pollen limitation is never minimized at an ESS and results from the evolution of flowering phenologies balancing the amount and genetic composition (outbred vs. inbred) of pollen receipt. Conclusions: Results are consistent with previous theory demonstrating that pollen limitation can be an evolved property, not just a constraint; they complement existing models by showing that plant avoidance of inbreeding depression constitutes a genetic mechanism contributing to evolution of pollen limitation, in addition to ecological mechanisms previously studied.


Assuntos
Depressão por Endogamia , Magnoliopsida/fisiologia , Modelos Biológicos , Polinização , Autofertilização , Animais
6.
Evolution ; 71(5): 1191-1204, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28321843

RESUMO

The bimodal distribution of fitness effects of new mutations and standing genetic variation, due to early-acting strongly deleterious recessive mutations and late-acting mildly deleterious mutations, is analyzed using the Kondrashov model for lethals (K), with either the infinitesimal model for selfing (IMS) or the Gaussian allele model (GAM) for quantitative genetic variance under stabilizing selection. In the combined models (KIMS and KGAM) high genomic mutation rates to lethals and weak stabilizing selection on many characters create strong interactions between early and late inbreeding depression, by changing the distribution of lineages selfed consecutively for different numbers of generations. Alternative stable equilibria can exist at intermediate selfing rates for a given set of parameters. Evolution of quantitative genetic variance under multivariate stabilizing selection can strongly influence the purging of nearly recessive lethals, and sometimes vice versa. If the selfing rate at the purging threshold for quantitative genetic variance in IMS or GAM alone exceeds that for nearly recessive lethals in K alone, then in KIMS and KGAM stabilizing selection causes selective interference with purging of lethals, increasing the mean number of lethals compared to K; otherwise, stabilizing selection causes selective facilitation in purging of lethals, decreasing the mean number of lethals.


Assuntos
Variação Genética , Depressão por Endogamia , Modelos Genéticos , Mutação , Consanguinidade , Seleção Genética
7.
BMC Evol Biol ; 16: 105, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27188583

RESUMO

BACKGROUND: Biparental inbreeding, mating between two relatives, occurs at a low frequency in many natural plant populations, which also often have substantial rates of self-fertilization. Although biparental inbreeding is likely to influence the dynamics of inbreeding depression and the evolution of selfing rates, it has received limited theoretical attention in comparison to selfing. The only previous model suggested that biparental inbreeding can favour the maintenance of stable intermediate selfing rates, but made unrealistic assumptions about the genetic basis of inbreeding depression. Here we extend a genetic model of inbreeding depression, describing nearly recessive lethal mutations at a very large number of loci, to incorporate sib-mating. We also include a constant component of inbreeding depression modelling the effects of mildly deleterious, nearly additive alleles. We analyze how observed rates of sib-mating influence the mean number of heterozygous lethals alleles and inbreeding depression in a population reproducing by a mixture of self-fertilization, sib-mating and outcrossing. We finally use the ensuing relationship between equilibrium inbreeding depression and population selfing rate to infer the evolutionarily stable selfing rates expected under such a mixed mating system. RESULTS: We show that for a given rate of inbreeding, sib-mating is more efficient at purging inbreeding depression than selfing, because homozygosity of lethals increases more gradually through sib-mating than through selfing. Because sib-mating promotes the purging of inbreeding depression and the evolution of selfing, our genetic model of inbreeding depression also predicts that sib-mating is unlikely to maintain stable intermediate selfing rates. CONCLUSIONS: Our results imply that even low rates of sib-mating affect plant mating system evolution, by facilitating the evolution of selfing via more efficient purging of inbreeding depression. Alternative mechanisms, such as pollination ecology, are necessary to explain stable mixed selfing and outcrossing.


Assuntos
Cruzamentos Genéticos , Depressão por Endogamia , Endogamia , Plantas/genética , Autofertilização , Evolução Biológica , Aptidão Genética , Heterozigoto , Homozigoto , Modelos Genéticos
8.
Data Brief ; 3: 165-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26217738

RESUMO

The biological diversity of the Earth is being rapidly depleted due to the direct and indirect consequences of human activities. Specialist or rare species are generally thought to be more extinction prone than generalist or common species. Testing this assumption however requires that the rarity and ecological specialization of the species are quantified. Many indices have been developed to classify species as generalists vs. specialists or as rare vs. common, but large data sets are needed to calculate these indices. Here, we present a list of specialization and rarity values for more than 2800 plant species of continental France, which were computed from the large botanical and ecological dataset SOPHY. Three specialization indices were calculated using species co-occurrence data. All three indices are based on (dis)similarity among plant communities containing a focal species, quantified either as beta diversity in an additive (Fridley et al., 2007 [6]) or multiplicative (Zeleny, 2008 [15]) partitioning of diversity or as the multiple site similarity of Baselga et al. (2007) [1]. Species rarity was calculated as the inverse of a species occurrence.

9.
Genetics ; 200(3): 891-906, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25969460

RESUMO

We analyze two models of the maintenance of quantitative genetic variance in a mixed-mating system of self-fertilization and outcrossing. In both models purely additive genetic variance is maintained by mutation and recombination under stabilizing selection on the phenotype of one or more quantitative characters. The Gaussian allele model (GAM) involves a finite number of unlinked loci in an infinitely large population, with a normal distribution of allelic effects at each locus within lineages selfed for τ consecutive generations since their last outcross. The infinitesimal model for partial selfing (IMS) involves an infinite number of loci in a large but finite population, with a normal distribution of breeding values in lineages of selfing age τ. In both models a stable equilibrium genetic variance exists, the outcrossed equilibrium, nearly equal to that under random mating, for all selfing rates, r, up to critical value, [Formula: see text], the purging threshold, which approximately equals the mean fitness under random mating relative to that under complete selfing. In the GAM a second stable equilibrium, the purged equilibrium, exists for any positive selfing rate, with genetic variance less than or equal to that under pure selfing; as r increases above [Formula: see text] the outcrossed equilibrium collapses sharply to the purged equilibrium genetic variance. In the IMS a single stable equilibrium genetic variance exists at each selfing rate; as r increases above [Formula: see text] the equilibrium genetic variance drops sharply and then declines gradually to that maintained under complete selfing. The implications for evolution of selfing rates, and for adaptive evolution and persistence of predominantly selfing species, provide a theoretical basis for the classical view of Stebbins that predominant selfing constitutes an "evolutionary dead end."


Assuntos
Evolução Biológica , Variação Genética , Modelos Genéticos , Reprodução/genética , Autofertilização/genética , Alelos
10.
Evolution ; 68(11): 3051-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25130655

RESUMO

We analyze evolution of individual flowering phenologies by combining an ecological model of pollinator behavior with a genetic model of inbreeding depression for plant viability. The flowering phenology of a plant genotype determines its expected daily floral display which, together with pollinator behavior, governs the population rate of geitonogamous selfing (fertilization among flowers on the same plant). Pollinators select plant phenologies in two ways: they are more likely to visit plants displaying more flowers per day, and they influence geitonogamous selfing and consequent inbreeding depression via their abundance, foraging behavior, and pollen carry-over among flowers on a plant. Our model predicts two types of equilibria at stable intermediate selfing rates for a wide range of pollinator behaviors and pollen transfer parameters. Edge equilibria occur at maximal or minimal selfing rates and are constrained by pollinators. Internal equilibria occur between edge equilibria and are determined by a trade-off between pollinator attraction to large floral displays and avoidance of inbreeding depression due to selfing. We conclude that unavoidable geitonogamous selfing generated by pollinator behavior can contribute to the common occurrence of stable mixed mating in plants.


Assuntos
Evolução Biológica , Magnoliopsida/fisiologia , Modelos Biológicos , Polinização , Animais , Endogamia , Magnoliopsida/genética , Fenômenos Fisiológicos Vegetais , Autoincompatibilidade em Angiospermas
11.
Evolution ; 67(12): 3628-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24299413

RESUMO

A comprehensive understanding of plant mating system evolution requires detailed genetic models for both the mating system and inbreeding depression, which are often intractable. A simple approximation assuming that the mating system evolves by small infrequent mutational steps has been proposed. We examine its accuracy by comparing the evolutionarily stable selfing rates it predicts to those obtained from an explicit genetic model of the selfing rate, when inbreeding depression is caused by partly recessive deleterious mutations at many loci. Both models also include pollen limitation and pollen discounting. The approximation produces reasonably accurate predictions with a low or moderate genomic mutation rate to deleterious alleles, on the order of U = 0.02-0.2. However, for high mutation rates, the predictions of the full genetic model differ substantially from those of the approximation, especially with nearly recessive lethal alleles. This occurs because when a modifier allele affecting the selfing rate is rare, homozygous modifiers are produced mainly by selfing, which enhances the opportunity for purging nearly recessive lethals and increases the marginal fitness of the allele modifying the selfing rate. Our results confirm that explicit genetic models of selfing rate and inbreeding depression are required to understand mating system evolution.


Assuntos
Evolução Molecular , Magnoliopsida/genética , Modelos Genéticos , Autofertilização/genética , Alelos , Genes de Plantas , Genes Recessivos , Homozigoto , Taxa de Mutação
12.
PLoS One ; 8(11): e80968, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278356

RESUMO

Biodiversity has reached a critical state. In this context, stakeholders need indicators that both provide a synthetic view of the state of biodiversity and can be used as communication tools. Using river fishes as model, we developed community indicators that aim at integrating various components of biodiversity including interactions between species and ultimately the processes influencing ecosystem functions. We developed indices at the species level based on (i) the concept of specialization directly linked to the niche theory and (ii) the concept of originality measuring the overall degree of differences between a species and all other species in the same clade. Five major types of originality indices, based on phylogeny, habitat-linked and diet-linked morphology, life history traits, and ecological niche were analyzed. In a second step, we tested the relationship between all biodiversity indices and land use as a proxy of human pressures. Fish communities showed no significant temporal trend for most of these indices, but both originality indices based on diet- and habitat- linked morphology showed a significant increase through time. From a spatial point of view, all indices clearly singled out Corsica Island as having higher average originality and specialization. Finally, we observed that the originality index based on niche traits might be used as an informative biodiversity indicator because we showed it is sensitive to different land use classes along a landscape artificialization gradient. Moreover, its response remained unchanged over two other land use classifications at the global scale and also at the regional scale.


Assuntos
Biodiversidade , Peixes , Água Doce , Animais , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Ecossistema , França , Humanos , Análise Espaço-Temporal
13.
Am Nat ; 181(5): 623-36, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23594546

RESUMO

Mutational meltdown, in which demographic and genetic processes mutually reinforce one another to accelerate the extinction of small populations, has been poorly quantified despite its potential importance in conservation biology. Here we present a model-based framework to study and quantify the mutational meltdown in a finite diploid population that is evolving continuously in time and subject to resource competition. We model slightly deleterious mutations affecting the population demographic parameters and study how the rate of mutation fixation increases as the genetic load increases, a process that we investigate at two timescales: an ecological scale and a mutational scale. Unlike most previous studies, we treat population size as a random process in continuous time. We show that as deleterious mutations accumulate, the decrease in mean population size accelerates with time relative to a null model with a constant mean fixation time. We quantify this mutational meltdown via the change in the mean fixation time after each new mutation fixation, and we show that the meltdown appears less severe than predicted by earlier theoretical work. We also emphasize that mean population size alone can be a misleading index of the risk of population extinction, which could be better evaluated with additional information on demographic parameters.


Assuntos
Diploide , Modelos Genéticos , Mutação , Evolução Molecular , Extinção Biológica , Densidade Demográfica , Processos Estocásticos
14.
Trends Ecol Evol ; 25(1): 35-43, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19683360

RESUMO

There is increasing evidence that human disturbance can negatively impact plant-pollinator interactions such as outcross pollination. We present a meta-analysis of 22 studies involving 27 plant species showing a significant reduction in the proportion of seeds outcrossed in response to anthropogenic habitat modifications. We discuss the evolutionary consequences of disturbance on plant mating systems, and in particular whether reproductive assurance through selfing effectively compensates for reduced outcrossing. The extent to which disturbance reduces pollinator versus mate availability could generate diverse selective forces on reproductive traits. Investigating how anthropogenic change influences plant mating will lead to new opportunities for better understanding of how mating systems evolve, as well as of the ecological and evolutionary consequences of human activities and how to mitigate them.


Assuntos
Evolução Biológica , Ecossistema , Endogamia , Plantas , Polinização , Animais , Humanos
15.
PLoS Genet ; 5(6): e1000530, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19557164

RESUMO

Loss or gain of DNA methylation can affect gene expression and is sometimes transmitted across generations. Such epigenetic alterations are thus a possible source of heritable phenotypic variation in the absence of DNA sequence change. However, attempts to assess the prevalence of stable epigenetic variation in natural and experimental populations and to quantify its impact on complex traits have been hampered by the confounding effects of DNA sequence polymorphisms. To overcome this problem as much as possible, two parents with little DNA sequence differences, but contrasting DNA methylation profiles, were used to derive a panel of epigenetic Recombinant Inbred Lines (epiRILs) in the reference plant Arabidopsis thaliana. The epiRILs showed variation and high heritability for flowering time and plant height ( approximately 30%), as well as stable inheritance of multiple parental DNA methylation variants (epialleles) over at least eight generations. These findings provide a first rationale to identify epiallelic variants that contribute to heritable variation in complex traits using linkage or association studies. More generally, the demonstration that numerous epialleles across the genome can be stable over many generations in the absence of selection or extensive DNA sequence variation highlights the need to integrate epigenetic information into population genetics studies.


Assuntos
Arabidopsis/genética , Epigênese Genética , Variação Genética , Característica Quantitativa Herdável , Metilação de DNA
16.
Am Nat ; 173(1): 1-11, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19055444

RESUMO

Classical models studying the evolution of self-fertilization in plants conclude that only complete selfing and complete outcrossing are evolutionarily stable. In contrast with this prediction, 42% of seed-plant species are reported to have rates of self-fertilization between 0.2 and 0.8. We propose that many previous models fail to predict intermediate selfing rates because they do not allow for functional relationships among three components of reproductive fitness: self-fertilized ovules, outcrossed ovules, and ovules sired by successful pollen export. Because the optimal design for fertility components may differ, conflicts among the alternative pathways to fitness are possible, and the greatest fertility may be achieved with some self-fertilization. Here we develop and analyze a model to predict optimal selfing rates that includes a range of possible relationships among the three components of reproductive fitness, as well as the effects of evolving inbreeding depression caused by deleterious mutations and of selection on total seed number. We demonstrate that intermediate selfing is optimal for a wide variety of relationships among fitness components and that inbreeding depression is not a good predictor of selfing-rate evolution. Functional relationships subsume the myriad effects of individual plant traits and thus offer a more general and simpler perspective on mating system evolution.


Assuntos
Evolução Biológica , Endogamia , Magnoliopsida/fisiologia , Modelos Biológicos , Polinização , Fertilidade
17.
Ann Bot ; 99(6): 1203-12, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17468109

RESUMO

BACKGROUND AND AIMS: Although conservation biology has long focused on population dynamics and genetics, phenotypic plasticity is likely to play a significant role in population viability. Here, an investigation is made into the relative contribution of genetic diversity and phenotypic plasticity to the phenotypic variation in natural populations of Ranunculus nodiflorus, a rare annual plant inhabiting temporary puddles in the Fontainebleau forest (Paris region, France) and exhibiting metapopulation dynamics. METHODS: The genetic diversity and phenotypic plasticity of quantitative traits (morphological and fitness components) were measured in five populations, using a combination of field measurements, common garden experiments and genotyping at microsatellite loci. KEY RESULTS: It is shown that populations exhibit almost undetectable genetic diversity at molecular markers, and that the variation in quantitative traits observed among populations is due to a high level of phenotypic plasticity. Despite the lack of genetic diversity, the natural population of R. nodiflorus exhibits large population sizes and does not appear threatened by extinction; this may be attributable to large phenotypic plasticity, enabling the production of numerous seeds under a wide range of environmental conditions. CONCLUSIONS: Efficient conservation of the populations can only be based on habitat management, to favour the maintenance of microenvironmental variation and the resulting strong phenotypic plasticity. In contrast, classical actions aiming to improve genetic diversity are useless in the present case.


Assuntos
Variação Genética , Ranunculus/crescimento & desenvolvimento , Ranunculus/genética , Algoritmos , França , Genótipo , Fenótipo , Característica Quantitativa Herdável
18.
Genet Res ; 87(1): 1-12, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16545147

RESUMO

The comparison of the genetic differentiation of quantitative traits (QST) and molecular markers (FST) can inform on the strength and spatial heterogeneity of selection in natural populations, provided that markers behave neutrally. However, selection may influence the behaviour of markers in selfing species with strong linkage disequilibria among loci, therefore invalidating this test of detection of selection. We address this issue by monitoring the genetic differentiation of five microsatellite loci (FST) and nine quantitative traits (QST) in experimental metapopulations of the predominantly selfing species Arabidopsis thaliana, that evolved during eight generations. Metapopulations differed with respect to population size and selection heterogeneity. In large populations, the genetic differentiation of neutral microsatellites was much larger under heterogeneous selection than under uniform selection. Using simulations, we show that this influence of selection heterogeneity on FST can be attributable to initial linkage disequilibria among loci, creating stronger genetic differentiation of QTL than expected under a simple additive model with no initial linkage. We found no significant differences between FST and QST regardless of selection heterogeneity, despite a demonstrated effect of selection on QST values. Additional data are required to validate the role of mating system and linkage disequilibria in the joint evolution of neutral and selected genetic differentiation, but our results suggest that FST/QST comparisons can be conservative tests to detect selection in selfing species.


Assuntos
Arabidopsis/genética , Genes de Plantas , Genética Populacional , Locos de Características Quantitativas , Arabidopsis/classificação , Simulação por Computador , Marcadores Genéticos , Desequilíbrio de Ligação , Repetições de Microssatélites , Modelos Biológicos , Modelos Genéticos , Seleção Genética
19.
New Phytol ; 169(1): 71-83, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16390420

RESUMO

Here, we explore the role of habitat spatial structure in the maintenance of metapopulations of Ranunculus nodiflorus. This rare species grows in puddles that can be connected occasionally by flooded corridors. We monitored five locations in the Fontainebleau forest, France, since 2002 and recorded the presence of corridors among puddles and evaluated their impact on puddle demography and plant fitness. We showed that connections increased population size, by increasing both the number of puddles occupied by the species and the density of individuals within puddles, but seemed to have no direct influence on plant fitness. We found no evidence of a large persistent soil seed bank. Natural corridors are likely to decrease the extinction probability of the populations, most probably by allowing recolonization of empty puddles after extinctions. Therefore, the preservation of corridors appears crucial for the conservation of R. nodiflorus in its natural habitat.


Assuntos
Ecossistema , Ranunculus/crescimento & desenvolvimento , Meio Ambiente , França , Germinação , Concentração de Íons de Hidrogênio
20.
New Phytol ; 166(2): 673-84, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15819929

RESUMO

Reproductive compensation, the replacement of dead embryos by potentially viable ones, is known to play a major role in the maintenance of deleterious mutations in mammalian populations. However, it has received little attention in plant evolution. Here we model the joint evolution of mating system and inbreeding depression with reproductive compensation. We used a dynamic model of inbreeding depression, allowing for partial purging of recessive lethal mutations by selfing. We showed that reproductive compensation tended to increase the mean number of lethals in a population, but favored self-fertilization by effectively decreasing early inbreeding depression. When compensation depended on the selfing rate, stable mixed mating systems can occur, with low to intermediate selfing rates. Experimental evidence of reproductive compensation is required to confirm its potential importance in the evolution of plant mating systems. We suggest experimental methods to detect reproductive compensation.


Assuntos
Evolução Biológica , Fenômenos Fisiológicos Vegetais , Variação Genética , Endogamia , Modelos Biológicos , Plantas/genética , Dinâmica Populacional , Reprodução/genética , Reprodução/fisiologia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA