Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(47): E11033-E11042, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397120

RESUMO

The nuclear receptor REV-ERBα integrates the circadian clock with hepatic glucose and lipid metabolism by nucleating transcriptional comodulators at genomic regulatory regions. An interactomic approach identified O-GlcNAc transferase (OGT) as a REV-ERBα-interacting protein. By shielding cytoplasmic OGT from proteasomal degradation and favoring OGT activity in the nucleus, REV-ERBα cyclically increased O-GlcNAcylation of multiple cytoplasmic and nuclear proteins as a function of its rhythmically regulated expression, while REV-ERBα ligands mostly affected cytoplasmic OGT activity. We illustrate this finding by showing that REV-ERBα controls OGT-dependent activities of the cytoplasmic protein kinase AKT, an essential relay in insulin signaling, and of ten-of-eleven translocation (TET) enzymes in the nucleus. AKT phosphorylation was inversely correlated to REV-ERBα expression. REV-ERBα enhanced TET activity and DNA hydroxymethylated cytosine (5hmC) levels in the vicinity of REV-ERBα genomic binding sites. As an example, we show that the REV-ERBα/OGT complex modulates SREBP-1c gene expression throughout the fasting/feeding periods by first repressing AKT phosphorylation and by epigenomically priming the Srebf1 promoter for a further rapid response to insulin. Conclusion: REV-ERBα regulates cytoplasmic and nuclear OGT-controlled processes that integrate at the hepatic SREBF1 locus to control basal and insulin-induced expression of the temporally and nutritionally regulated lipogenic SREBP-1c transcript.


Assuntos
Insulina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Animais , Linhagem Celular Tumoral , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
2.
J Clin Invest ; 124(3): 1037-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531544

RESUMO

The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry-based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis.


Assuntos
Adenilato Quinase/metabolismo , Ácidos e Sais Biliares/biossíntese , Homeostase , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Adenilato Quinase/antagonistas & inibidores , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Transporte Biológico , Células CACO-2 , Colestase Intra-Hepática/metabolismo , Colestase Intra-Hepática/patologia , Células Hep G2 , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Receptores Citoplasmáticos e Nucleares/química , Ribonucleotídeos/farmacologia , Transdução de Sinais , Transativadores/metabolismo , Transcrição Gênica , Ativação Transcricional/efeitos dos fármacos
3.
Endocrinology ; 154(10): 3690-701, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23861371

RESUMO

The α-1-acid glycoprotein/orosomucoids (ORMs) are members of the lipocalin protein family. Encoded by 3 polymorphic genes in mouse (2 in man, 1 in rat), ORMs are expressed in hepatocytes and function as acute-phase proteins secreted in plasma under stressful conditions. In addition to their role of nanocarrier, ORMs are involved in several pathophysiological processes such as immunosuppression, cardioprotection, and inflammatory bowel disease. The nuclear bile acid receptor farnesoid X receptor (FXR) regulates bile acid homeostasis and lipid and glucose metabolism and is an important modulator of enterohepatic functions. Here we report that hepatic FXR deletion in mice affects the expression of several members of the lipocalin family, among which ORMs are identified as direct FXR target genes. Indeed, a FXR response element upstream of the mouse Orm1 promoter was identified to which hepatic, but not ileal, FXR can bind and activate ORM expression in vitro and in vivo. However, ORMs are regulated in a species-specific manner because the ORM cluster is regulated by FXR neither in human nor rat cell lines. Consistent with these data, chromatin immunoprecipitation sequencing analysis of the FXR genomic binding sites did not detect any FXR response element in the vicinity of the human or rat ORM gene cluster. Thus, bile acids and their cognate nuclear receptor, FXR, are regulators of ORM expression, with potential implications for the species-specific metabolic and inflammation control by FXR because the expression of the proinflammatory genes in epididymal white adipose tissue was dependent on liver FXR activation.


Assuntos
Tecido Adiposo Branco/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Família Multigênica , Orosomucoide/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Elementos de Resposta , Tecido Adiposo Branco/imunologia , Animais , Linhagem Celular , Hepatócitos/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos , Orosomucoide/biossíntese , Orosomucoide/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
4.
J Lipid Res ; 53(9): 1723-37, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22550135

RESUMO

Dyslipidemia is an important risk factor for cardiovascular disease (CVD) and atherosclerosis. When dyslipidemia coincides with other metabolic disorders such as obesity, hypertension, and glucose intolerance, defined as the metabolic syndrome (MS), individuals present an elevated risk to develop type 2 diabetes (T2D) as well as CVD. Because the MS epidemic represents a growing public health problem worldwide, the development of therapies remains a major challenge. Alterations of bile acid pool regulation in T2D have revealed a link between bile acid and metabolic homeostasis. The bile acid receptors farnesoid X receptor (FXR) and TGR5 both regulate lipid, glucose, and energy metabolism, rendering them potential pharmacological targets for MS therapy. This review discusses the mechanisms of metabolic regulation by FXR and TGR5 and the utility relevance of natural and synthetic modulators of FXR and TGR5 activity, including bile acid sequestrants, in the treatment of the MS.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Dislipidemias/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Dislipidemias/metabolismo , Humanos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Acoplados a Proteínas G/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA