Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 18 Suppl 2: 17-24, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27723226

RESUMO

AIMS: Basal insulin peglispro (BIL), a novel PEGylated basal insulin with a large hydrodynamic size, has a delayed absorption and reduced clearance that prolongs the duration of action. The current study compared the effects of BIL and insulin glargine (GL) on endogenous glucose production (EGP), glucose disposal rate (GDR) and lipolysis in patients with type 1 diabetes. MATERIALS AND METHODS: This was a randomized, open-label, four-period, crossover study. Patients received intravenous infusions of BIL and GL, each at two dose levels selected for partial and maximal suppression of EGP, during an 8 to 10 h euglycemic clamp procedure with d-[3-3 H] glucose. RESULTS: Following correction for equivalent human insulin concentrations (EHIC), low-dose GL infusion resulted in similar EGP at the end of the clamp compared to low-dose BIL infusion (GL/BIL ratio of 1.03) but a higher GDR (GL/BIL ratio of 2.42), indicating similar hepatic activity but attenuated peripheral activity of BIL. Consistent with this, the EHIC-corrected GDR/EGP at the end of the clamp was 1.72-fold greater for GL than BIL following low-dose administration. At the lower dose of BIL and GL (concentrations in the therapeutic range), BIL produced less suppression of lipolysis compared with GL as indicated by free fatty acid and glycerol levels at the end of the clamp. CONCLUSIONS: Compared with GL, BIL restored the hepato-peripheral insulin action gradient seen in normal physiology via its peripherally restricted action on target tissues related to carbohydrate and lipid metabolism.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/farmacologia , Insulina Glargina/farmacologia , Insulina Lispro/análogos & derivados , Lipólise/efeitos dos fármacos , Fígado/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Adulto , Glicemia/metabolismo , Estudos Cross-Over , Diabetes Mellitus Tipo 1/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Técnica Clamp de Glucose , Glicerol/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Infusões Intravenosas , Insulina Glargina/uso terapêutico , Insulina Lispro/farmacologia , Insulina Lispro/uso terapêutico , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Polietilenoglicóis/uso terapêutico , Trítio , Adulto Jovem
2.
Ugeskr Laeger ; 160(10): 1475-9, 1998 Mar 02.
Artigo em Dinamarquês | MEDLINE | ID: mdl-9520616

RESUMO

Accelerated metabolism is a hallmark of thyrotoxicosis, but the underlying biochemical mechanisms are incompletely understood. In order to elucidate these metabolic events further, we studied 12 patients with newly diagnosed diffuse (10 patients) or nodular (two patients) toxic goitre (ten women, two men; age 42.8 +/- 3.2 yr; BMI: 21.6 +/- 0.7 kg/m2) before ("TOX") and after ("TRE") 11.2 +/- 1.0 weeks treatment with methimazole and compared these patients to a control group ("CTR") of 11 subjects (nine women, two men; age 40.5 +/- 3.9 yr; BMI 22.5 +/- 1.0 kg/m2). All were studied for three hours in the basal state, using indirect calorimetry, isotope dilution for measurement of glucose turnover and the forearm technique for assessment of muscle metabolism. Prior to treatment patients with thyrotoxicosis were characterized by: Increased (p < 0.05) levels of T3 (3.75 +/- 0.23 [TOX], 1.89 +/- 0.08 [TRE] and 1.75 +/- 0.11 [CTR] nmol/l), resting energy expenditure (130.5 +/- 3.5 [TOX], 107.7 +/- 2.7 [TRE] and 106.3 +/- 3.1 [CTR] percent of predicted), protein oxidation (0.67 +/- 0.03 [TOX], 0.54 +/- 0.06 [TRE] and 0.46 +/- 0.05 [CTR] mg/kg/min), lipid oxidation (1.34 +/- 0.08 [TOX], 1.00 +/- 0.06 [TRE] and 1.02 +/- 0.04 [CTR] mg/kg/min), endogenous glucose production (2.51 +/- 0.13 [TOX], 1.86 +/- 0.12 [TRE] and 1.85 +/- 0.12 [CTR] mg/kg/min), non-oxidative glucose turnover (1.28 +/- 0.16 [TOX], 0.75 +/- 0.18 [TRE] and 0.71 +/- 0.11 [CTR] mg/kg/min) and a 50% increase in total forearm blood flow. Glucose oxidation (1.23 +/- 0.09 [TOX], 1.13 +/- 0.10 [TRE] and 1.13 +/- 0.09 [CTR] mg/kg/min), exchange of substrates in the muscles of the forearm and circulating levels of insulin, C-peptide, growth hormone or glucagon were not influenced by hyperthyroidism. Propranolol (20 mg thrice daily) given to seven of the patients for two days did not affect circulating levels of thyroid hormones, energy expenditure or glucose turnover rates. These results suggest that all major fuel sources contribute to the hypermetabolism of thyrotoxicosis and that augmented non-oxidative glucose metabolism may further aggravate the condition. All abnormalities recede with medical treatment of the disease.


Assuntos
Tireotoxicose/metabolismo , Adulto , Antitireóideos/uso terapêutico , Metabolismo Energético , Feminino , Glucose/metabolismo , Bócio/sangue , Bócio/tratamento farmacológico , Bócio/metabolismo , Bócio Nodular/sangue , Bócio Nodular/tratamento farmacológico , Bócio Nodular/metabolismo , Humanos , Masculino , Metimazol/uso terapêutico , Ciclização de Substratos , Hormônios Tireóideos/sangue , Tireotoxicose/sangue , Tireotoxicose/tratamento farmacológico
3.
Diabetes ; 45(12): 1792-7, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8922367

RESUMO

Although sulfonylureas enhance insulin secretion, it is unknown whether these hypoglycemic chemicals stimulate insulin secretion through the augmentation of the pulsatile or basal modes of insulin release. Enhanced pulsatile insulin could occur in turn through amplification of the burst mass or an increase in burst frequency. To address the mechanism of sulfonylurea action, we employed a recently validated canine model with a portal vein sampling catheter and flow probe to measure pulsatile insulin secretion in vivo directly in response to tolbutamide infusion or ingestion. After a 16-h fast, seven dogs were studied in the postabsorptive basal state and during a tolbutamide (0.2 mg/min) infusion when their plasma glucose concentrations were clamped at euglycemia. Insulin concentrations in the carotid artery (basal vs. tolbutamide, 85 +/- 12 vs. 325 +/- 66 pmol/l; P < 0.01) and portal vein (basal vs. tolbutamide, 345 +/- 55 vs. 1,288 +/- 230 pmol/l; P < 0.01) increased during tolbutamide infusion, but the portal vein plasma flow did not change. Increased plasma insulin concentrations were achieved by a fourfold increase in the total insulin secretion rate (2.3 +/- 0.2 to 9.4 +/- 1.9 pmol x kg(-1) x min(-1); basal vs. tolbutamide, P < 0.01). The augmented total insulin secretion was achieved mechanistically via a marked and selective increase in the insulin secretory burst mass (basal vs. tolbutamide, 266 +/- 64 vs. 817 +/- 144 pmol/pulse; P < 0.01), with no change in portal-vein insulin pulse frequency (basal vs. tolbutamide, 10.1 +/- 0.6 vs. 11.1 +/- 0.8 pulses/h; P = 0.3). Oral (250 mg) tolbutamide also magnified the endogenous insulin secretion rate by the preferential amplification of the secretory pulse mass (basal vs. tolbutamide, 167 +/- 37 vs. 362 +/- 50 pmol/pulse; P < 0.01). Neither the infusion nor the ingestion of tolbutamide changed the calculated clearance rates of endogenously secreted insulin. We conclude that sulfonylurea (tolbutamide) induced insulin secretion in vivo is achieved by the highly selective amplification of insulin secretory burst mass with no change in basal insulin release or the frequency of the beta-cell-network pacemaker.


Assuntos
Hipoglicemiantes/farmacologia , Insulina/metabolismo , Tolbutamida/farmacologia , Animais , Glicemia/metabolismo , Artérias Carótidas , Cães , Técnica Clamp de Glucose , Secreção de Insulina , Cinética , Periodicidade , Veia Porta , Tolbutamida/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA