Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 45(3): 170-182, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37772443

RESUMO

Prediction of catalytic reaction efficiency is one of the most intriguing and challenging applications of machine learning (ML) algorithms in chemistry. In this study, we demonstrated a strategy for utilizing ML protocols applied to Quantum Theory of Atoms In Molecules (QTAIM) parameters to predict the ability of the A17 L47K catalytic antibody to covalently capture organophosphate pesticides. We found that the novel "composite" DFT functional B97-3c could be effectively employed for fast and accurate initial geometry optimization, aligning well with the input dataset creation. QTAIM descriptors proved to be well-established in describing the examined dataset using density-based and hierarchical clustering algorithms. The obtained clusters exhibited correlations with the chemical classes of the input compounds. The precise physical interpretation of the QTAIM properties simplifies the explanation of feature impact for both supervised and unsupervised ML protocols. It also enables acceleration in the search for entries with desired properties within large databases. Furthermore, our findings indicated that Ridge Regression with Laplacian kernel and CatBoost Regressor algorithms demonstrated suitable performance in handling small datasets with non-trivial dependencies. They were able to predict the actual reaction barrier values with a high level of accuracy. Additionally, the CatBoost Classifier proved reliable in discriminating between "active" and "inactive" compounds.

2.
Molecules ; 28(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37959845

RESUMO

A novel method for synthesizing 1,2,4-triazole- and tetrazole-containing 4H-thiopyrano[2,3-b]quinolines using a new combination of the thio-Michael and aza-Morita-Baylis-Hillman reactions was developed. Target compounds were evaluated for their cytotoxicities and antiviral activities against influenza A/Puerto Rico/8/34 virus in MDCK cells. The compounds showed low toxicity and some exhibited moderate antiviral activity. Molecular docking identified the M2 channel and polymerase basic protein 2 as potential targets. We observed that the antiviral activity of thiopyrano[2,3-b]quinolines is notably affected by both the nature and position of the substituent within the tetrazole ring, as well as the substituent within the benzene moiety of quinoline. These findings contribute to the further search for new antiviral agents against influenza A viruses among derivatives of thiopyrano[2,3-b]quinoline.


Assuntos
Quinolinas , Simulação de Acoplamento Molecular , Quinolinas/farmacologia , Antivirais/farmacologia
3.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003521

RESUMO

Over the past decades, the problem of bacterial resistance to most antibiotics has become a serious threat to patients' survival. Nevertheless, antibiotics of a novel class have not been approved since the 1980s. The development of antibiotic potentiators is an appealing alternative to the challenging process of searching for new antimicrobials. Production of H2S-one of the leading defense mechanisms crucial for bacterial survival-can be influenced by the inhibition of relevant enzymes: bacterial cystathionine γ-lyase (bCSE), bacterial cystathionine ß-synthase (bCBS), or 3-mercaptopyruvate sulfurtransferase (MST). The first one makes the main contribution to H2S generation. Herein, we present data on the synthesis, in silico analyses, and enzymatic and microbiological assays of novel bCSE inhibitors. Combined molecular docking and molecular dynamics analyses revealed a novel binding mode of these ligands to bCSE. Lead compound 2a manifested strong potentiating activity when applied in combination with some commonly used antibiotics against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. The compound was found to have favorable in vitro absorption, distribution, metabolism, excretion, and toxicity parameters. The high effectiveness and safety of compound 2a makes it a promising candidate for enhancing the activity of antibiotics against high-priority pathogens.


Assuntos
Sulfeto de Hidrogênio , Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Cistationina gama-Liase/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Pirróis/farmacologia , Simulação de Acoplamento Molecular , Bactérias/metabolismo , Indóis/farmacologia , Cistationina beta-Sintase/metabolismo
4.
Future Med Chem ; 15(11): 923-935, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37466055

RESUMO

Dopamine receptor D3 (D3R) has gained attention as a promising therapeutic target for neurological disorders. In this study, an innovative in silico click reaction strategy was employed to identify potential D3R binders. The ligand template, 1-phenyl-4-[4-(1H-1,2,3-triazol-5-yl)butyl]piperazine, with substitution at the 1,2,3-triazole ring, served as the starting point. Generated compounds underwent filtration based on their brain-to-blood concentration ratio (logBB), leading to the identification of 1-{4-[1-(decahydronaphthalen-1-yl)-1H-1,2,3-triazol-5-yl]butyl}-4-phenylpiperazine as the most promising candidate, displaying superior D3R affinity and blood-brain barrier (BBB) permeability compared to the reference ligand, eticlopride. Molecular dynamics simulations further supported these findings. This study presents a novel hit for designing D3R ligands and establishes a workflow utilizing in silico click chemistry to screen compounds with BBB permeability. The proposed click reaction-based algorithm holds significant potential as a valuable tool in the development of effective antipsychotic compounds.


Assuntos
Antipsicóticos , Barreira Hematoencefálica , Ligantes , Barreira Hematoencefálica/metabolismo , Química Click , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismo
5.
mBio ; 14(1): e0336322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36602305

RESUMO

Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.


Assuntos
Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Filogenia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Bactérias/metabolismo , Antibacterianos
6.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887069

RESUMO

Flaviviruses are single-stranded RNA viruses that have emerged in recent decades and infect up to 400 million people annually, causing a variety of potentially severe pathophysiological processes including hepatitis, encephalitis, hemorrhagic fever, tissues and capillaries damage. The Flaviviridae family is represented by four genera comprising 89 known virus species. There are no effective therapies available against many pathogenic flaviviruses. One of the promising strategies for flavivirus infections prevention and therapy is the use of neutralizing antibodies (NAb) that can disable the virus particles from infecting the host cells. The envelope protein (E protein) of flaviviruses is a three-domain structure that mediates the fusion of viral and host membranes delivering the infectious material. We previously developed and characterized 10H10 mAb which interacts with the E protein of the tick-borne encephalitis virus (TBEV) and many other flaviviruses' E proteins. The aim of this work was to analyze the structure of E protein binding sites recognized by the 10H10 antibody, which is reactive with different flavivirus species. Here, we present experimental data and 3D modeling indicating that the 10H10 antibody recognizes the amino acid sequence between the two cysteines C92-C116 of the fusion loop (FL) region of flaviviruses' E proteins. Overall, our results indicate that the antibody-antigen complex can form a rigid or dynamic structure that provides antibody cross reactivity and efficient interaction with the fusion loop of E protein.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Infecções por Flavivirus , Anticorpos Neutralizantes , Anticorpos Antivirais , Reações Cruzadas , Humanos
7.
Molecules ; 27(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458631

RESUMO

Inhibition of human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1) by different chiral lipophilic nucleoside derivatives was studied. New Tdp1 inhibitors were found in the series of the studied compounds with IC50 = 2.7-6.7 µM. It was shown that D-lipophilic nucleoside derivatives manifested higher inhibition activity than their L-analogs, and configuration of the carbohydrate moiety can influence the mechanism of Tdp1 inhibition.


Assuntos
Nucleosídeos , Diester Fosfórico Hidrolases , Humanos , Ligantes , Nucleosídeos/farmacologia , Diester Fosfórico Hidrolases/química
8.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35337071

RESUMO

Compounds that contain (R)-3-amino-4-(2,4,5-trifluorophenyl)butanoic acid substituted with bicyclic amino moiety (2-aza-bicyclo[2.2.1]heptane) were designed using molecular modelling methods, synthesised, and found to be potent DPP-4 (dipeptidyl peptidase-4) inhibitors. Compound 12a (IC50 = 16.8 ± 2.2 nM), named neogliptin, is a more potent DPP-4 inhibitor than vildagliptin and sitagliptin. Neogliptin interacts with key DPP-4 residues in the active site and has pharmacophore parameters similar to vildagliptin and sitagliptin. It was found to have a low cardiotoxic effect compared to sitagliptin, and it is superior to vildagliptin in terms of ADME properties. Moreover, compound 12a is stable in aqueous solutions due to its low intramolecular cyclisation potential. These findings suggest that compound 12a has unique properties and can act as a template for further type 2 diabetes mellitus drug development.

9.
Cells ; 10(9)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572006

RESUMO

Myelodysplastic syndrome (MDS) refers to a heterogeneous group of closely related clonal hematopoietic disorders, which are characterized by accumulation of somatic mutations. The acquired mutation burden is suggested to define the pathway and consequent phenotype of the pathology. Recent studies have called attention to the role of miRNA biogenesis genes in MDS progression; in particular, the mutational pressure of the DROSHA gene was determined. Therefore, this highlights the importance of studying the impact of all collected missense mutations found within the DROSHA gene in oncohematology that might affect the functionality of the protein. In this study, the selected mutations were extensively examined by computational screening, and the most deleterious were subjected to a further molecular dynamic simulation in order to uncover the molecular mechanism of the structural damage to the protein altering its biological function. The most significant effect was found for variants I625K, L1047S, and H1170D, presumably affecting the endonuclease activity of DROSHA. Such alterations arisen during MDS progression should be taken into consideration as evoking certain clinical traits in the malignifying clonal evolution.


Assuntos
Mutação de Sentido Incorreto/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Ribonuclease III/genética , Evolução Clonal/genética , Progressão da Doença , Endonucleases/genética , Humanos
10.
Nucleic Acids Res ; 49(17): e102, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34214168

RESUMO

Rapidly evolving RNA viruses continuously produce minority haplotypes that can become dominant if they are drug-resistant or can better evade the immune system. Therefore, early detection and identification of minority viral haplotypes may help to promptly adjust the patient's treatment plan preventing potential disease complications. Minority haplotypes can be identified using next-generation sequencing, but sequencing noise hinders accurate identification. The elimination of sequencing noise is a non-trivial task that still remains open. Here we propose CliqueSNV based on extracting pairs of statistically linked mutations from noisy reads. This effectively reduces sequencing noise and enables identifying minority haplotypes with the frequency below the sequencing error rate. We comparatively assess the performance of CliqueSNV using an in vitro mixture of nine haplotypes that were derived from the mutation profile of an existing HIV patient. We show that CliqueSNV can accurately assemble viral haplotypes with frequencies as low as 0.1% and maintains consistent performance across short and long bases sequencing platforms.


Assuntos
Algoritmos , Biologia Computacional/métodos , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Infecções por Vírus de RNA/diagnóstico , Vírus de RNA/genética , COVID-19/diagnóstico , COVID-19/virologia , Frequência do Gene , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , HIV-1/genética , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Infecções por Vírus de RNA/virologia , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Sensibilidade e Especificidade
11.
Front Plant Sci ; 12: 642591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025691

RESUMO

The difference in symbiotic specificity between peas of Afghanistan and European phenotypes was investigated using molecular modeling. Considering segregating amino acid polymorphism, we examined interactions of pea LykX-Sym10 receptor heterodimers with four forms of Nodulation factor (NF) that varied in natural decorations (acetylation and length of the glucosamine chain). First, we showed the stability of the LykX-Sym10 dimer during molecular dynamics (MD) in solvent and in the presence of a membrane. Then, four NFs were separately docked to one European and two Afghanistan dimers, and the results of these interactions were in line with corresponding pea symbiotic phenotypes. The European variant of the LykX-Sym10 dimer effectively interacts with both acetylated and non-acetylated forms of NF, while the Afghanistan variants successfully interact with the acetylated form only. We additionally demonstrated that the length of the NF glucosamine chain contributes to controlling the effectiveness of the symbiotic interaction. The obtained results support a recent hypothesis that the LykX gene is a suitable candidate for the unidentified Sym2 allele, the determinant of pea specificity toward Rhizobium leguminosarum bv. viciae strains producing NFs with or without an acetylation decoration. The developed modeling methodology demonstrated its power in multiple searches for genetic determinants, when experimental detection of such determinants has proven extremely difficult.

12.
Cells ; 9(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659887

RESUMO

The kidney is essential for systemic calcium homeostasis. Urinary calcium excretion can be viewed as an integrative renal response to endocrine and local stimuli. The extracellular calcium-sensing receptor (CaSR) elicits a number of adaptive reactions to increased plasma Ca2+ levels including the control of parathyroid hormone release and regulation of the renal calcium handling. Calcium reabsorption in the distal nephron of the kidney is functionally coupled to sodium transport. Apart from Ca2+ transport systems, CaSR signaling affects relevant distal Na+-(K+)-2Cl- cotransporters, NKCC2 and NCC. NKCC2 and NCC are activated by a kinase cascade comprising with-no-lysine [K] kinases (WNKs) and two homologous Ste20-related kinases, SPAK and OSR1. Gain-of-function mutations within the WNK-SPAK/OSR1-NKCC2/NCC pathway lead to renal salt retention and hypertension, whereas loss-of-function mutations have been associated with salt-losing tubulopathies such as Bartter or Gitelman syndromes. A Bartter-like syndrome has been also described in patients carrying gain-of-function mutations in the CaSR gene. Recent work suggested that CaSR signals via the WNK-SPAK/OSR1 cascade to modulate salt reabsorption along the distal nephron. The review presented here summarizes the latest progress in understanding of functional interactions between CaSR and WNKs and their potential impact on the renal salt handling and blood pressure.


Assuntos
Rim/enzimologia , Rim/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Humanos , Rim/citologia , Néfrons/citologia , Néfrons/enzimologia , Néfrons/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores de Detecção de Cálcio/genética , Transdução de Sinais/fisiologia
13.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019136

RESUMO

Alpha-fetoprotein (AFP) is a major embryo- and tumor-associated protein capable of binding and transporting a variety of hydrophobic ligands, including estrogens. AFP has been shown to inhibit estrogen receptor (ER)-positive tumor growth, which can be attributed to its estrogen-binding ability. Despite AFP having long been investigated, its three-dimensional (3D) structure has not been experimentally resolved and molecular mechanisms underlying AFP-ligand interaction remains obscure. In our study, we constructed a homology-based 3D model of human AFP (HAFP) with the purpose of molecular docking of ERα ligands, three agonists (17ß-estradiol, estrone and diethylstilbestrol), and three antagonists (tamoxifen, afimoxifene and endoxifen) into the obtained structure. Based on the ligand-docked scoring functions, we identified three putative estrogen- and antiestrogen-binding sites with different ligand binding affinities. Two high-affinity binding sites were located (i) in a tunnel formed within HAFP subdomains IB and IIA and (ii) on the opposite side of the molecule in a groove originating from a cavity formed between domains I and III, while (iii) the third low-affinity binding site was found at the bottom of the cavity. Here, 100 ns molecular dynamics (MD) simulation allowed us to study their geometries and showed that HAFP-estrogen interactions were caused by van der Waals forces, while both hydrophobic and electrostatic interactions were almost equally involved in HAFP-antiestrogen binding. Molecular mechanics/Generalized Born surface area (MM/GBSA) rescoring method exploited for estimation of binding free energies (ΔGbind) showed that antiestrogens have higher affinities to HAFP as compared to estrogens. We performed in silico point substitutions of amino acid residues to confirm their roles in HAFP-ligand interactions and showed that Thr132, Leu138, His170, Phe172, Ser217, Gln221, His266, His316, Lys453, and Asp478 residues, along with two disulfide bonds (Cys224-Cys270 and Cys269-Cys277), have key roles in both HAFP-estrogen and HAFP-antiestrogen binding. Data obtained in our study contribute to understanding mechanisms underlying protein-ligand interactions and anticancer therapy strategies based on ERα-binding ligands.


Assuntos
Estradiol/metabolismo , Moduladores de Receptor Estrogênico/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , alfa-Fetoproteínas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese , Alinhamento de Sequência
14.
Cells ; 8(10)2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615102

RESUMO

In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.


Assuntos
Ácidos Nucleicos Livres/genética , Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante , Humanos , Biópsia Líquida/métodos , Biópsia Líquida/tendências , Células Neoplásicas Circulantes/metabolismo , Prognóstico
15.
Oxid Med Cell Longev ; 2019: 3085756, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31485289

RESUMO

Oxidative stress is a consequence of the use of oxygen in aerobic respiration by living organisms and is denoted as a persistent condition of an imbalance between the generation of reactive oxygen species (ROS) and the ability of the endogenous antioxidant system (AOS) to detoxify them. The oxidative stress theory has been confirmed in many animal studies, which demonstrated that the maintenance of cellular homeostasis and biomolecular stability and integrity is crucial for cellular longevity and successful aging. Mitochondrial dysfunction, impaired protein homeostasis (proteostasis) network, alteration in the activities of transcription factors such as Nrf2 and NF-κB, and disturbances in the protein quality control machinery that includes molecular chaperones, ubiquitin-proteasome system (UPS), and autophagy/lysosome pathway have been observed during aging and age-related chronic diseases. The accumulation of ROS under oxidative stress conditions results in the induction of lipid peroxidation and glycoxidation reactions, which leads to the elevated endogenous production of reactive aldehydes and their derivatives such as glyoxal, methylglyoxal (MG), malonic dialdehyde (MDA), and 4-hydroxy-2-nonenal (HNE) giving rise to advanced lipoxidation and glycation end products (ALEs and AGEs, respectively). Both ALEs and AGEs play key roles in cellular response to oxidative stress stimuli through the regulation of a variety of cell signaling pathways. However, elevated ALE and AGE production leads to protein cross-linking and aggregation resulting in an alteration in cell signaling and functioning which causes cell damage and death. This is implicated in aging and various age-related chronic pathologies such as inflammation, neurodegenerative diseases, atherosclerosis, and vascular complications of diabetes mellitus. In the present review, we discuss experimental data evidencing the impairment in cellular functions caused by AGE/ALE accumulation under oxidative stress conditions. We focused on the implications of ALEs/AGEs in aging and age-related diseases to demonstrate that the identification of cellular dysfunctions involved in disease initiation and progression can serve as a basis for the discovery of relevant therapeutic agents.


Assuntos
Envelhecimento/genética , Doença/genética , Produtos Finais de Glicação Avançada/genética , Peroxidação de Lipídeos/genética , Estresse Oxidativo/genética , Animais , Feminino , Humanos , Camundongos
16.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 2): 175-182, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830742

RESUMO

Taxifolin, also known as dihydroquercetin, is the major flavonoid in larch wood. It is well known as an antioxidant and a bioactive substance. Taxifolin as an active pharmaceutical ingredient is produced industrially in crystalline form during the processing of larch wood. Some information is available on nano- and microstructured particles of taxifolin. This paper reports on the generation of a new form of taxifolin as microtubes. These self-assembled tubes were obtained from raw taxifolin by crystal engineering with urea at ambient temperature and pressure. The parameters of temperature, pH value, molar ratio of taxifolin and urea, and time duration were optimized for yield enhancement of the microtubes. The water solubility and melting point of the new form of taxifolin were established. The microtubes were characterized by X-ray diffraction, X-ray powder diffraction, microscopy, mass spectrometry, 1H NMR spectroscopy, UV spectroscopy and Fourier transform infrared spectroscopy methods. The experimental results demonstrate that the microtubes and raw taxifolin both exist in crystalline form with the same structure of the crystal unit. However, they are characterized by different morphological and physicochemical properties. Computer simulation was performed to explain the mechanism of the self-assembly process.


Assuntos
Quercetina/análogos & derivados , Cristalização , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Modelos Moleculares , Tamanho da Partícula , Espectroscopia de Prótons por Ressonância Magnética , Quercetina/química , Solubilidade , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura
17.
Planta ; 248(5): 1101-1120, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30043288

RESUMO

MAIN CONCLUSION: The LysM receptor-like kinase K1 is involved in regulation of pea-rhizobial symbiosis development. The ability of the crop legume Pisum sativum L. to perceive the Nod factor rhizobial signals may depend on several receptors that differ in ligand structure specificity. Identification of pea mutants defective in two types of LysM receptor-like kinases (LysM-RLKs), SYM10 and SYM37, featuring different phenotypic manifestations and impaired at various stages of symbiosis development, corresponds well to this assumption. There is evidence that one of the receptor proteins involved in symbiosis initiation, SYM10, has an inactive kinase domain. This implies the presence of an additional component in the receptor complex, together with SYM10, that remains unknown. Here, we describe a new LysM-RLK, K1, which may serve as an additional component of the receptor complex in pea. To verify the function of K1 in symbiosis, several P. sativum non-nodulating mutants in the k1 gene were identified using the TILLING approach. Phenotyping revealed the blocking of symbiosis development at an appropriately early stage, strongly suggesting the importance of LysM-RLK K1 for symbiosis initiation. Moreover, the analysis of pea mutants with weaker phenotypes provides evidence for the additional role of K1 in infection thread distribution in the cortex and rhizobia penetration. The interaction between K1 and SYM10 was detected using transient leaf expression in Nicotiana benthamiana and in the yeast two-hybrid system. Since the possibility of SYM10/SYM37 complex formation was also shown, we tested whether the SYM37 and K1 receptors are functionally interchangeable using a complementation test. The interaction between K1 and other receptors is discussed.


Assuntos
Pisum sativum/enzimologia , Proteínas de Plantas/fisiologia , Proteínas Quinases/fisiologia , Rhizobium leguminosarum/fisiologia , Simbiose , Western Blotting , Engenharia Genética/métodos , Pisum sativum/microbiologia , Pisum sativum/fisiologia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Técnicas do Sistema de Duplo-Híbrido
18.
Peptides ; 99: 61-69, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175519

RESUMO

A growing body of evidence suggests that peptides may possess analgesic effects without tolerance development. The synthetic tetrapeptide Tyr-d-Arg-Phe-Gly-NH2 was modified with the inclusion of a (d-Arg)8 vector to prevent the action of endopeptidase and to increase the duration of the analgesic action of the tetrapeptide when administered orally. The aim of this study was to estimate the analgesic efficacy of the tetrapeptide with (d-Arg)8 (tridecapeptide, TDP) in experimental models of acute and chronic pain. The analgesic effects of TDP were estimated using a model of acute visceral pain in mice (writhing test) and a model of chronic neuropathic pain (chronic constriction injury (CCI) of the sciatic nerve) in rats. The intravenous administration of morphine (0.32-1mg/kg) and TDP (0.32-1.8mg/kg) produced significant dose-related antinociceptive effects in the writhing test. The potency of TDP after i.g. administration was lower than that after i.v. administration but comparable with that of i.g. morphine. In the CCI model, TDP (0.1, 1 and 10mg/kg, i.g.) induced marked analgesia with repeated administration without any signs of tolerance. The single administration of TDP after morphine treatment (7days) produced a significant analgesic effect in morphine-tolerant rats, indicating the absence of cross-tolerance between these two drugs. The combined administration of TDP and morphine resulted in the reduction of analgesic tolerance to morphine. The absence of cross-tolerance to morphine and the ability to prevent morphine tolerance allows this compound to be a prospective candidate for chronic pain therapy. In order to find the target receptors for TDP, a docking study was performed. It was found that the molecule can bind to the NMDA receptor using electrostatic, hydrogen bonding and hydrophobic interactions.


Assuntos
Dor Aguda/tratamento farmacológico , Analgésicos/farmacologia , Dor Crônica/tratamento farmacológico , Portadores de Fármacos/farmacologia , Neuralgia/tratamento farmacológico , Peptídeos/farmacologia , Dor Aguda/metabolismo , Dor Aguda/patologia , Analgésicos/química , Animais , Dor Crônica/metabolismo , Dor Crônica/patologia , Modelos Animais de Doenças , Masculino , Neuralgia/metabolismo , Neuralgia/patologia , Peptídeos/química , Ratos , Ratos Wistar
19.
Vaccines (Basel) ; 5(4)2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28976923

RESUMO

Toll-Like Receptor 4 (TLR4) signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries. Modulation of the TLR4 pathway is a potential strategy to specifically target these pathologies. Among the diseases caused by TLR4 abnormal activation by bacterial endotoxin, sepsis is the most dangerous one because it is a life-threatening acute system inflammatory condition that still lacks specific pharmacological treatment. Here, we review molecules at a preclinical or clinical phase of development, that are active in inhibiting the TLR4-MyD88 and TLR4-TRIF pathways in animal models. These are low-molecular weight compounds of natural and synthetic origin that can be considered leads for drug development. The results of in vivo studies in the sepsis model and the mechanisms of action of drug leads are presented and critically discussed, evidencing the differences in treatment results from rodents to humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA