Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1359147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586449

RESUMO

Introduction: Proinflammatory cytokines are implicated in pancreatic ß cell failure in type 1 and type 2 diabetes and are known to stimulate alternative RNA splicing and the expression of nonsense-mediated RNA decay (NMD) components. Here, we investigate whether cytokines regulate NMD activity and identify transcript isoforms targeted in ß cells. Methods: A luciferase-based NMD reporter transiently expressed in rat INS1(832/13), human-derived EndoC-ßH3, or dispersed human islet cells is used to examine the effect of proinflammatory cytokines (Cyt) on NMD activity. The gain- or loss-of-function of two key NMD components, UPF3B and UPF2, is used to reveal the effect of cytokines on cell viability and function. RNA-sequencing and siRNA-mediated silencing are deployed using standard techniques. Results: Cyt attenuate NMD activity in insulin-producing cell lines and primary human ß cells. These effects are found to involve ER stress and are associated with the downregulation of UPF3B. Increases or decreases in NMD activity achieved by UPF3B overexpression (OE) or UPF2 silencing raise or lower Cyt-induced cell death, respectively, in EndoC-ßH3 cells and are associated with decreased or increased insulin content, respectively. No effects of these manipulations are observed on glucose-stimulated insulin secretion. Transcriptomic analysis reveals that Cyt increases alternative splicing (AS)-induced exon skipping in the transcript isoforms, and this is potentiated by UPF2 silencing. Gene enrichment analysis identifies transcripts regulated by UPF2 silencing whose proteins are localized and/or functional in the extracellular matrix (ECM), including the serine protease inhibitor SERPINA1/α-1-antitrypsin, whose silencing sensitizes ß-cells to Cyt cytotoxicity. Cytokines suppress NMD activity via UPR signaling, potentially serving as a protective response against Cyt-induced NMD component expression. Conclusion: Our findings highlight the central importance of RNA turnover in ß cell responses to inflammatory stress.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Insulinas , Humanos , Ratos , Animais , RNA/metabolismo , Células Secretoras de Insulina/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Insulinas/metabolismo , Proteínas de Ligação a RNA/genética
2.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38187722

RESUMO

Proinflammatory cytokines are implicated in pancreatic ß-cell failure in type 1 and type 2 diabetes and are known to stimulate alternative RNA splicing and the expression of Nonsense-Mediated RNA Decay (NMD) components. Here, we investigate whether cytokines regulate NMD activity and identify transcript isoforms targeted in ß-cells. A luciferase-based NMD reporter transiently expressed in rat INS1(832/13), human-derived EndoC-ßH3 or dispersed human islet cells is used to examine the effect of proinflammatory cytokines (Cyt) on NMD activity. Gain- or loss-of function of two key NMD components UPF3B and UPF2 is used to reveal the effect of cytokines on cell viability and function. RNA-sequencing and siRNA-mediated silencing are deployed using standard techniques. Cyt attenuate NMD activity in insulin-producing cell lines and primary human ß-cells. These effects are found to involve ER stress and are associated with downregulation of UPF3B. Increases or decreases in NMD activity achieved by UPF3B overexpression (OE) or UPF2 silencing, raises or lowers Cyt-induced cell death, respectively, in EndoC-ßH3 cells, and are associated with decreased or increased insulin content, respectively. No effects of these manipulations are observed on glucose-stimulated insulin secretion. Transcriptomic analysis reveals that Cyt increase alternative splicing (AS)-induced exon skipping in the transcript isoforms, and this is potentiated by UPF2 silencing. Gene enrichment analysis identifies transcripts regulated by UPF2 silencing whose proteins are localized and/or functional in extracellular matrix (ECM) including the serine protease inhibitor SERPINA1/α-1-antitrypsin, whose silencing sensitises ß-cells to Cyt cytotoxicity. Cytokines suppress NMD activity via UPR signalling, potentially serving as a protective response against Cyt-induced NMD component expression. Our findings highlight the central importance of RNA turnover in ß-cell responses to inflammatory stress.

3.
Nucleic Acids Res ; 52(D1): D1138-D1142, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37933860

RESUMO

BloodSpot is a specialised database integrating gene expression data from acute myeloid leukaemia (AML) patients related to blood cell development and maturation. The database and interface has helped numerous researchers and clinicians to quickly get an overview of gene expression patterns in healthy and malignant haematopoiesis. Here, we present an update to our framework that includes protein expression data of sorted single cells. With this update we also introduce datasets broadly spanning age groups, which many users have requested, with particular interest for researchers studying paediatric leukaemias. The backend of the database has been rewritten and migrated to a cloud-based environment to accommodate the growth, and provide a better user-experience for our many international users. Users can now enjoy faster transfer speeds and a more responsive interface. In conclusion, the continuing popularity of the database and emergence of new data modalities has prompted us to rewrite and futureproof the back-end, including paediatric centric views, as well as single cell protein data, allowing us to keep the database updated and relevant for the years to come. The database is freely available at www.bloodspot.eu.


Assuntos
Hematopoese , Leucemia Mieloide Aguda , Criança , Humanos , Células Sanguíneas , Diferenciação Celular , Bases de Dados Genéticas , Hematopoese/genética , Leucemia Mieloide Aguda/genética , Proteínas/genética
4.
Nat Commun ; 14(1): 6185, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794021

RESUMO

The myeloid transcription factor CEBPA is recurrently biallelically mutated (i.e., double mutated; CEBPADM) in acute myeloid leukemia (AML) with a combination of hypermorphic N-terminal mutations (CEBPANT), promoting expression of the leukemia-associated p30 isoform, and amorphic C-terminal mutations. The most frequently co-mutated genes in CEBPADM AML are GATA2 and TET2, however the molecular mechanisms underlying this co-mutational spectrum are incomplete. By combining transcriptomic and epigenomic analyses of CEBPA-TET2 co-mutated patients with models thereof, we identify GATA2 as a conserved target of the CEBPA-TET2 mutational axis, providing a rationale for the mutational spectra in CEBPADM AML. Elevated CEBPA levels, driven by CEBPANT, mediate recruitment of TET2 to the Gata2 distal hematopoietic enhancer thereby increasing Gata2 expression. Concurrent loss of TET2 in CEBPADM AML induces a competitive advantage by increasing Gata2 promoter methylation, thereby rebalancing GATA2 levels. Of clinical relevance, demethylating treatment of Cebpa-Tet2 co-mutated AML restores Gata2 levels and prolongs disease latency.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Mutação , Sequências Reguladoras de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo
6.
Nat Commun ; 14(1): 5910, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737208

RESUMO

Single-cell resolution analysis of complex biological tissues is fundamental to capture cell-state heterogeneity and distinct cellular signaling patterns that remain obscured with population-based techniques. The limited amount of material encapsulated in a single cell however, raises significant technical challenges to molecular profiling. Due to extensive optimization efforts, single-cell proteomics by Mass Spectrometry (scp-MS) has emerged as a powerful tool to facilitate proteome profiling from ultra-low amounts of input, although further development is needed to realize its full potential. To this end, we carry out comprehensive analysis of orbitrap-based data-independent acquisition (DIA) for limited material proteomics. Notably, we find a fundamental difference between optimal DIA methods for high- and low-load samples. We further improve our low-input DIA method by relying on high-resolution MS1 quantification, thus enhancing sensitivity by more efficiently utilizing available mass analyzer time. With our ultra-low input tailored DIA method, we are able to accommodate long injection times and high resolution, while keeping the scan cycle time low enough to ensure robust quantification. Finally, we demonstrate the capability of our approach by profiling mouse embryonic stem cell culture conditions, showcasing heterogeneity in global proteomes and highlighting distinct differences in key metabolic enzyme expression in distinct cell subclusters.


Assuntos
Células-Tronco Embrionárias Murinas , Proteômica , Animais , Camundongos , Espectrometria de Massas , Proteoma , Análise de Célula Única
7.
Clin Epigenetics ; 15(1): 91, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237325

RESUMO

BACKGROUND: Idiopathic non-clonal cytopenia (ICUS) and clonal cytopenia (CCUS) are common in the elderly population. While these entities have similar clinical presentations with peripheral blood cytopenia and less than 10% bone marrow dysplasia, their malignant potential is different and the biological relationship between these disorders and myeloid neoplasms such as myelodysplastic syndrome (MDS) is not fully understood. Aberrant DNA methylation has previously been described to play a vital role in MDS and acute myeloid leukemia (AML) pathogenesis. In addition, obesity confers a poorer prognosis in MDS with inferior overall survival and a higher rate of AML transformation. In this study, we measured DNA methylation of the promoter for the obesity-regulated gene LEP, encoding leptin, in hematopoietic cells from ICUS, CCUS and MDS patients and healthy controls. We investigated whether LEP promoter methylation is an early event in the development of myeloid neoplasms and whether it is associated with clinical outcome. RESULTS: We found that blood cells of patients with ICUS, CCUS and MDS all have a significantly hypermethylated LEP promoter compared to healthy controls and that LEP hypermethylation is associated with anemia, increased bone marrow blast percentage, and lower plasma leptin levels. MDS patients with a high LEP promoter methylation have a higher risk of progression, shorter progression-free survival, and inferior overall survival. Furthermore, LEP promoter methylation was an independent risk factor for the progression of MDS in a multivariate Cox regression analysis. CONCLUSION: In conclusion, hypermethylation of the LEP promoter is an early and frequent event in myeloid neoplasms and is associated with a worse prognosis.


Assuntos
Anemia , Leptina , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Idoso , Humanos , Anemia/genética , Hematopoiese Clonal , Metilação de DNA , Leptina/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Obesidade/genética
8.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37225426

RESUMO

Epigenetic marks and associated traits can be transmitted for one or more generations, phenomena known respectively as inter- or transgenerational epigenetic inheritance. It remains unknown if genetically and conditionally induced aberrant epigenetic states can influence the development of the nervous system across generations. Here, we show, using Caenorhabditis elegans as a model system, that alteration of H3K4me3 levels in the parental generation, caused by genetic manipulation or changes in parental conditions, has, respectively, trans- and intergenerational effects on H3K4 methylome, transcriptome, and nervous system development. Thus, our study reveals the relevance of H3K4me3 transmission and maintenance in preventing long-lasting deleterious effects in nervous system homeostasis.


Assuntos
Caenorhabditis elegans , Epigenoma , Animais , Metilação , Caenorhabditis elegans/genética , Epigenômica , Homeostase/genética
9.
Genome Res ; 33(3): 332-345, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36927987

RESUMO

SWI/SNF and NuRD are protein complexes that antagonistically regulate DNA accessibility. However, repression of their activities often leads to unanticipated changes in target gene expression (paradoxical), highlighting our incomplete understanding of their activities. Here we show that SWI/SNF and NuRD are in a tug-of-war to regulate PRC2 occupancy at lowly expressed and bivalent genes in mouse embryonic stem cells (mESCs). In contrast, at promoters of average or highly expressed genes, SWI/SNF and NuRD antagonistically modulate RNA polymerase II (Pol II) release kinetics, arguably owing to accompanying alterations in H3.3 and H2A.Z levels at promoter-flanking nucleosomes, leading to paradoxical changes in gene expression. Owing to this mechanism, the relative activities of the two remodelers potentiate gene promoters toward Pol II-dependent open or PRC2-dependent closed chromatin states. Our results highlight RNA Pol II occupancy as the key parameter in determining the direction of gene expression changes in response to SWI/SNF and NuRD inactivation at gene promoters in mESCs.


Assuntos
RNA Polimerase II , Fatores de Transcrição , Animais , Camundongos , RNA Polimerase II/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Nucleossomos/genética , Expressão Gênica
10.
J Immunol ; 210(5): 537-546, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637217

RESUMO

CD4+ TH cells develop into subsets that are specialized in the secretion of particular cytokines to mediate restricted types of inflammation and immune responses. Among the subsets that promote development of allergic inflammatory responses, IL-9-producing TH9 cells are regulated by a number of transcription factors. We have previously shown that the E26 transformation-specific (Ets) family members PU.1 and Ets translocation variant 5 (ETV5) function in parallel to regulate IL-9. In this study we identified a third member of the Ets family of transcription factors, Ets-related gene (ERG), that mediates IL-9 production in TH9 cells in the absence of PU.1 and ETV5. Chromatin immunoprecipitation assays revealed that ERG interaction at the Il9 promoter region is restricted to the TH9 lineage and is sustained during murine TH9 polarization. Knockdown or knockout of ERG during murine or human TH9 polarization in vitro led to a decrease in IL-9 production in TH9 cells. Deletion of ERG in vivo had modest effects on IL-9 production in vitro or in vivo. However, in the absence of PU.1 and ETV5, ERG was required for residual IL-9 production in vitro and for IL-9 production by lung-derived CD4 T cells in a mouse model of chronic allergic airway disease. Thus, ERG contributes to IL-9 regulation in TH9 cells.


Assuntos
Alveolite Alérgica Extrínseca , Asma , Hipersensibilidade , Pneumonia , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos , Diferenciação Celular , Interleucina-9 , Pneumonia/metabolismo , Linfócitos T Auxiliares-Indutores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulador Transcricional ERG/metabolismo
11.
Leukemia ; 37(3): 593-605, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36631623

RESUMO

Epigenetic regulators are frequently mutated in hematological malignancies including acute myeloid leukemia (AML). Thus, the identification and characterization of novel epigenetic drivers affecting AML biology holds potential to improve our basic understanding of AML and to uncover novel options for therapeutic intervention. To identify novel tumor suppressive epigenetic regulators in AML, we performed an in vivo short hairpin RNA (shRNA) screen in the context of CEBPA mutant AML. This identified the Histone 3 Lysine 4 (H3K4) demethylase KDM5C as a tumor suppressor, and we show that reduced Kdm5c/KDM5C expression results in accelerated growth both in human and murine AML cell lines, as well as in vivo in Cebpa mutant and inv(16) AML mouse models. Mechanistically, we show that KDM5C act as a transcriptional repressor through its demethylase activity at promoters. Specifically, KDM5C knockdown results in globally increased H3K4me3 levels associated with up-regulation of bivalently marked immature genes. This is accompanied by a de-differentiation phenotype that could be reversed by modulating levels of several direct and indirect downstream mediators. Finally, the association of KDM5C levels with long-term disease-free survival of female AML patients emphasizes the clinical relevance of our findings and identifies KDM5C as a novel female-biased tumor suppressor in AML.


Assuntos
Histona Desmetilases , Leucemia Mieloide Aguda , Animais , Feminino , Humanos , Camundongos , Diferenciação Celular , Linhagem Celular , Relevância Clínica , Histona Desmetilases/genética , Leucemia Mieloide Aguda/genética
12.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255229

RESUMO

Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that degrades RNAs harboring in-frame stop codons in specific contexts. Loss of NMD factors leads to embryonic lethality in organisms spanning the phylogenetic scale, but the mechanism remains unknown. Here, we report that the core NMD factor, UPF2, is required for expansion of epiblast cells within the inner cell mass of mice in vivo. We identify NMD target mRNAs in mouse blastocysts - both canonical and alternatively processed mRNAs - including those encoding cell cycle arrest and apoptosis factors, raising the possibility that NMD is essential for embryonic cell proliferation and survival. In support, the inner cell mass of Upf2-null blastocysts rapidly regresses with outgrowth and is incompetent for embryonic stem cell derivation in vitro. In addition, we uncovered concordant temporal- and lineage-specific regulation of NMD factors and mRNA targets, indicative of a shift in NMD magnitude during peri-implantation development. Together, our results reveal developmental and molecular functions of the NMD pathway in the early embryo.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , RNA , Camundongos , Animais , RNA/metabolismo , Filogenia , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camadas Germinativas/metabolismo , Proteínas de Ligação a RNA/metabolismo
13.
Sci Transl Med ; 14(666): eabm6391, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223446

RESUMO

The bone marrow microenvironment provides indispensable factors to sustain blood production throughout life. It is also a hotspot for the progression of hematologic disorders and the most frequent site of solid tumor metastasis. Preclinical research relies on xenograft mouse models, but these models preclude the human-specific functional interactions of stem cells with their bone marrow microenvironment. Instead, human mesenchymal cells can be exploited for the in vivo engineering of humanized niches, which confer robust engraftment of human healthy and malignant blood samples. However, mesenchymal cells are associated with major reproducibility issues in tissue formation. Here, we report the fast and standardized generation of human mini-bones by a custom-designed human mesenchymal cell line. These resulting humanized ossicles (hOss) consist of fully mature bone and bone marrow structures hosting a human mesenchymal niche with retained stem cell properties. As compared to mouse bones, we demonstrate superior engraftment of human cord blood hematopoietic cells and primary acute myeloid leukemia samples and also validate hOss as a metastatic site for breast cancer cells. We further report the engraftment of neuroblastoma patient-derived xenograft cells in a humanized model, recapitulating clinically described osteolytic lesions. Collectively, our human mini-bones constitute a powerful preclinical platform to model bone-developing tumors using patient-derived materials.


Assuntos
Leucemia Mieloide Aguda , Nicho de Células-Tronco , Animais , Osso e Ossos , Modelos Animais de Doenças , Hematopoese , Humanos , Camundongos , Reprodutibilidade dos Testes , Microambiente Tumoral
14.
Nat Commun ; 13(1): 3595, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739121

RESUMO

Differentiation of multipotent stem cells into mature cells is fundamental for development and homeostasis of mammalian tissues, and requires the coordinated induction of lineage-specific transcriptional programs and cell cycle withdrawal. To understand the underlying regulatory mechanisms of this fundamental process, we investigated how the tissue-specific transcription factors, CEBPA and CEBPE, coordinate cell cycle exit and lineage-specification in vivo during granulocytic differentiation. We demonstrate that CEBPA promotes lineage-specification by launching an enhancer-primed differentiation program and direct activation of CEBPE expression. Subsequently, CEBPE confers promoter-driven cell cycle exit by sequential repression of MYC target gene expression at the G1/S transition and E2F-meditated G2/M gene expression, as well as by the up-regulation of Cdk1/2/4 inhibitors. Following cell cycle exit, CEBPE unleashes the CEBPA-primed differentiation program to generate mature granulocytes. These findings highlight how tissue-specific transcription factors coordinate cell cycle exit with differentiation through the use of distinct gene regulatory elements.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Ciclo Celular , Diferenciação Celular/genética , Granulócitos/metabolismo , Mamíferos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Cell Rep ; 39(6): 110793, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545054

RESUMO

Ribosomopathies constitute a range of disorders associated with defective protein synthesis mainly affecting hematopoietic stem cells (HSCs) and erythroid development. Here, we demonstrate that deletion of poly-pyrimidine-tract-binding protein 1 (PTBP1) in the hematopoietic compartment leads to the development of a ribosomopathy-like condition. Specifically, loss of PTBP1 is associated with decreases in HSC self-renewal, erythroid differentiation, and protein synthesis. Consistent with its function as a splicing regulator, PTBP1 deficiency results in splicing defects in hundreds of genes, and we demonstrate that the up-regulation of a specific isoform of CDC42 partly mimics the protein-synthesis defect associated with loss of PTBP1. Furthermore, PTBP1 deficiency is associated with a marked defect in ribosome biogenesis and a selective reduction in the translation of mRNAs encoding ribosomal proteins. Collectively, this work identifies PTBP1 as a key integrator of ribosomal functions and highlights the broad functional repertoire of RNA-binding proteins.


Assuntos
Células-Tronco Hematopoéticas , Ribossomos , Eritrócitos/metabolismo , Eritropoese , Células-Tronco Hematopoéticas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
16.
Sci Adv ; 8(11): eabf8627, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302840

RESUMO

Activation of interferon genes constitutes an important anticancer pathway able to restrict proliferation of cancer cells. Here, we demonstrate that the H3K9me3 histone methyltransferase (HMT) suppressor of variegation 3-9 homolog 1 (SUV39H1) is required for the proliferation of acute myeloid leukemia (AML) and find that its loss leads to activation of the interferon pathway. Mechanistically, we show that this occurs via destabilization of a complex composed of SUV39H1 and the two H3K9me2 HMTs, G9A and GLP. Indeed, loss of H3K9me2 correlated with the activation of key interferon pathway genes, and interference with the activities of G9A/GLP largely phenocopied loss of SUV39H1. Last, we demonstrate that inhibition of G9A/GLP synergized with DNA demethylating agents and that SUV39H1 constitutes a potential biomarker for the response to hypomethylation treatment. Collectively, we uncovered a clinically relevant role for H3K9me2 in safeguarding cancer cells against activation of the interferon pathway.

17.
Mol Cell Proteomics ; 21(4): 100219, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219906

RESUMO

In the young field of single-cell proteomics (scMS), there is a great need for improved global proteome characterization, both in terms of proteins quantified per cell and quantitative performance thereof. The recently introduced real-time search (RTS) on the Orbitrap Eclipse Tribrid mass spectrometer in combination with SPS-MS3 acquisition has been shown to be beneficial for the measurement of samples that are multiplexed using isobaric tags. Multiplexed scMS requires high ion injection times and high-resolution spectra to quantify the single-cell signal; however, the carrier channel facilitates peptide identification and thus offers the opportunity for fast on-the-fly precursor filtering before committing to the time-intensive quantification scan. Here, we compared classical MS2 acquisition against RTS-SPS-MS3, both using the Orbitrap Eclipse Tribrid MS with the FAIMS Pro ion mobility interface and present a new acquisition strategy termed RETICLE (RTS enhanced quant of single cell spectra) that makes use of fast real-time searched linear ion trap scans to preselect MS1 peptide precursors for quantitative MS2 Orbitrap acquisition. We show that classical MS2 acquisition is outperformed by both RTS-SPS-MS3 through increased quantitative accuracy at similar proteome coverage, and RETICLE through higher proteome coverage, with the latter enabling the quantification of over 1000 proteins per cell at an MS2 injection time of 750 ms using a 2 h gradient.


Assuntos
Proteoma , Proteômica , Espectrometria de Massas , Peptídeos
18.
Blood Cancer Discov ; 3(1): 16-31, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019858

RESUMO

Central nervous system (CNS) dissemination of B-precursor acute lymphoblastic leukemia (B-ALL) has poor prognosis and remains a therapeutic challenge. Here we performed targeted DNA sequencing as well as transcriptional and proteomic profiling of paired leukemia-infiltrating cells in the bone marrow (BM) and CNS of xenografts. Genes governing mRNA translation were upregulated in CNS leukemia, and subclonal genetic profiling confirmed this in both BM-concordant and BM-discordant CNS mutational populations. CNS leukemia cells were exquisitely sensitive to the translation inhibitor omacetaxine mepesuccinate, which reduced xenograft leptomeningeal disease burden. Proteomics demonstrated greater abundance of secreted proteins in CNS-infiltrating cells, including complement component 3 (C3), and drug targeting of C3 influenced CNS disease in xenografts. CNS-infiltrating cells also exhibited selection for stemness traits and metabolic reprogramming. Overall, our study identifies targeting of mRNA translation as a potential therapeutic approach for B-ALL leptomeningeal disease. SIGNIFICANCE: Cancer metastases are often driven by distinct subclones with unique biological properties. Here we show that in B-ALL CNS disease, the leptomeningeal environment selects for cells with unique functional dependencies. Pharmacologic inhibition of mRNA translation signaling treats CNS disease and offers a new therapeutic approach for this condition.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Doenças do Sistema Nervoso Central , Neoplasias do Sistema Nervoso Central , Neoplasias Meníngeas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Humanos , Neoplasias Meníngeas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Biossíntese de Proteínas/genética , Proteômica
19.
Immunology ; 165(2): 274-286, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775600

RESUMO

Monocytes play a crucial role in maintaining homeostasis and mediating a successful innate immune response. They also act as central players in diverse pathological conditions, thus making them an attractive therapeutic target. Within the bone marrow, monocytes arise from a committed precursor termed Common Monocyte Progenitor (cMoP). However, molecular mechanisms that regulate the differentiation of cMoP to various monocytic subsets remain unclear. Herein, we purified murine myeloid precursors for deep poly-A-enriched RNA sequencing to understand the role of alternative splicing in the development and differentiation of monocytes under homeostasis. Our analyses revealed intron retention to be the major alternative splicing mechanism involved in the monocyte differentiation cascade, especially in the differentiation of Ly6Chi monocytes to Ly6Clo monocytes. Furthermore, we found that the intron retention of key genes involved in the differentiation of murine Ly6Chi to Ly6Clo monocytes was also conserved in humans. Our data highlight the unique role of intron retention in the regulation of the monocytic differentiation pathway.


Assuntos
Processamento Alternativo , Diferenciação Celular , Regulação da Expressão Gênica , Íntrons , Monócitos/metabolismo , Transdução de Sinais , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Biomarcadores , Diferenciação Celular/genética , Imunofenotipagem , Camundongos , Camundongos Transgênicos , Monócitos/citologia , Monócitos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA