Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39073885

RESUMO

SUMMARY: Quantification of growth parameters and extracellular uptake and production fluxes is central in systems and synthetic biology. Fluxes can be estimated using various mathematical models by fitting time-course measurements of the concentration of cells and extracellular substrates and products. A single tool is available to non-computational biologists to calculate extracellular fluxes, but it is hardly interoperable and is limited to a single hard-coded growth model. We present our open-source flux calculation software, PhysioFit, which can be used with any growth model and is interoperable by design. PhysioFit includes some of the most common growth models, and advanced users can implement additional models to calculate extracellular fluxes and other growth parameters for metabolic systems or experimental setups that follow alternative kinetics. PhysioFit can be used as a Python library and offers a graphical user interface for intuitive use by end-users and a command-line interface to streamline integration into existing pipelines. AVAILABILITY AND IMPLEMENTATION: PhysioFit v3 is implemented in Python 3 and was tested on Windows, Unix, and MacOS platforms. The source code and the documentation are freely distributed under GPL3 license at https://github.com/MetaSys-LISBP/PhysioFit/ and https://physiofit.readthedocs.io/.


Assuntos
Software , Modelos Biológicos , Biologia Sintética/métodos
2.
Nat Metab ; 6(7): 1253-1267, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789798

RESUMO

The energy cost of neuronal activity is mainly sustained by glucose1,2. However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis3-6, a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase-fructose-2,6-bisphosphatase-3 (PFKFB3)3,7,8, a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through Pfkfb3 expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD+) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining Pfkfb3 expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD+ restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions.


Assuntos
Cognição , Glicólise , Neurônios , Fosfofrutoquinase-2 , Animais , Neurônios/metabolismo , Camundongos , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/genética , Cognição/fisiologia , Mitocôndrias/metabolismo , Metabolismo Energético , NAD/metabolismo , Glucose/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38452244

RESUMO

Alzheimer's disease is strongly linked to metabolic abnormalities. We aimed to distinguish amyloid-positive people who progressed to cognitive decline from those who remained cognitively intact. We performed untargeted metabolomics of blood samples from amyloid-positive individuals, before any sign of cognitive decline, to distinguish individuals who progressed to cognitive decline from those who remained cognitively intact. A plasma-derived metabolite signature was developed from Supercritical Fluid chromatography coupled with high-resolution mass spectrometry (SFC-HRMS) and nuclear magnetic resonance (NMR) metabolomics. The 2 metabolomics data sets were analyzed by Data Integration Analysis for Biomarker discovery using Latent approaches for Omics studies (DIABLO), to identify a minimum set of metabolites that could describe cognitive decline status. NMR or SFC-HRMS data alone cannot predict cognitive decline. However, among the 320 metabolites identified, a statistical method that integrated the 2 data sets enabled the identification of a minimal signature of 9 metabolites (3-hydroxybutyrate, citrate, succinate, acetone, methionine, glucose, serine, sphingomyelin d18:1/C26:0 and triglyceride C48:3) with a statistically significant ability to predict cognitive decline more than 3 years before decline. This metabolic fingerprint obtained during this exploratory study may help to predict amyloid-positive individuals who will develop cognitive decline. Due to the high prevalence of brain amyloid-positivity in older adults, identifying adults who will have cognitive decline will enable the development of personalized and early interventions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Vida Independente , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Disfunção Cognitiva/metabolismo , Encéfalo/metabolismo , Metabolômica , Proteínas Amiloidogênicas , Peptídeos beta-Amiloides/metabolismo , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA