Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Immunobiology ; 228(6): 152747, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774598

RESUMO

BACKGROUND: Obesity is a global problem associated with several conditions, including hypertension, diabetes, arthritis and cardiovascular diseases. With the increase in the prevalence of obesity in recent years, mostly in developing countries, it is important to study its impact on various diseases, including infectious illnesses, such as Chagas disease, caused by the protozoan Trypanosoma cruzi. Considering that a diet rich in salt, sugar, and fat is associated with obesity, this study aimed to evaluate the influence of cafeteria diet (CAF)-induced obesity on immune responses in T. cruzi-infected rats. METHODS: Male Wistar Hannover rats were provided with water and food ad libitum (chow group). The CAF-fed groups received a normal rodent diet or CAF. The animals were intraperitoneally infected with 105 trypomastigote forms of the Y strain of T. cruzi present in the whole blood from a previously infected mouse. RESULTS: CAF-fed rats showed a significant increase in visceral adipose tissue weight compared to chow-fed rats. A significant reduction in CD3+ CD4+ helper splenic T cells was observed in obese-infected rats compared to non-obese-infected rats, as well as CD11b and macrophages. In addition, macrophages from obese animals displayed reduced RT1b levels compared to those from control animals. Moreover, INF-γ, an important factor in macrophage activation, was reduced in obese-infected rats compared with their counterparts. CONCLUSIONS: These results indicate that a CAF can impair the cell-mediated immune response against T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Ratos , Masculino , Camundongos , Animais , Ratos Wistar , Obesidade , Dieta , Imunidade
2.
Sci Rep ; 13(1): 10203, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353536

RESUMO

Assessing the in vitro toxicity of compounds on cell cultures is an important step during the screening of candidate molecules for diverse applications. Among the strategies employed to determine cytotoxicity, MTT, neutral red, and resazurin are commonly used. Methylene blue (MB), a phenothiazinium salt, has several uses, such as dye, redox indicator, and even as treatment for human disease and health conditions, such as malaria and methemoglobinemia. However, MB has only been sparsely used as a cellular toxicity indicator. As a viability indicator, MB is mostly applied to fixed cultures at high concentrations, especially when compared to MTT or neutral red. Here we show that MB and its related compounds new methylene blue (NMB), toluidine blue O (TBO), and dimethylmethylene blue (DMMB) can be used as cytotoxicity indicators in live (non-fixed) cells treated for 72 h with DMSO and cisplatin. We compared dye uptake between phenothiazinium dyes and neutral red by analyzing supernatant and cell content via visible spectra scanning and microscopy. All dyes showed a similar ability to assess cell toxicity compared to either MTT or neutral red. Our method represents a cost-effective alternative to in vitro cytotoxicity assays using cisplatin or DMSO, indicating the potential of phenothiazinium dyes for the screening of candidate drugs and other applications.


Assuntos
Corantes , Fenotiazinas , Humanos , Fenotiazinas/farmacologia , Cisplatino/farmacologia , Vermelho Neutro , Dimetil Sulfóxido , Azul de Metileno
3.
Nat Prod Res ; 37(24): 4210-4220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36799539

RESUMO

p-Coumaric acid is derived from cinnamic acid and is one of the major compounds in the Brazilian green propolis extract. Studies have shown that both p-coumaric acid and cinnamic acid have promising antiproliferative effects. In this context, aiming to increase the complexity of these active natural products and their activities, we performed coupling reactions with propargylamine and benzylamine, as well as with threonine, phenylalanine and lysine amino acids, aiming to enhance their antiproliferative effects towards the hormone-dependent breast cancer MCF-7 cells. Overall, the p-coumaric acid coupling with L-threonine amino acid (compound 15) had the best selectivity index (SI = 5.1), with half-maximal inhibitory concentration of 39.6 ± 1 µM, showing a high selectivity against hormone-dependent breast cancer cell lines MCF-7 and low cytotoxicity against the normal breast cell lines MCF-10A. Thus, this new natural product derivative may represent a prototype for the future development of antiproliferative agents, especially against hormone-dependent breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Ácidos Cumáricos/farmacologia , Células MCF-7 , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Hormônios/farmacologia , Hormônios/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral
4.
Bioorg Med Chem ; 47: 116372, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454129

RESUMO

Breast cancer has the highest incidence and mortality in females, while prostate cancer has the second-highest incidence in males. Studies have shown that compounds from Brazilian green propolis have antitumor activities and can selectively inhibit the AKR1C3 enzyme, overexpressed in hormone-dependent prostate and breast tumors. Thus, in an attempt to develop new cytotoxic inhibitors against these cancers, three prenylated compounds, artepillin C, drupanin and baccharin, were isolated from green propolis to synthesize new derivatives via coupling reactions with different amino acids. All obtained derivatives were submitted to antiproliferative assays against four cancer cells (MCF-7, MDA MB-231, PC-3, and DU145) and two normal cell lines (MCF-10A and PNT-2) to evaluate their cytotoxicity. In general, the best activity was observed for compound6e, derived from drupanin, which exhibited half-maximal inhibitory concentration (IC50) of 9.6 ± 3 µM and selectivity index (SI) of 5.5 against MCF-7 cells.In silicostudies demonstrated that these derivatives present coherent docking interactions and binding modes against AKR1C3, which might represent a possible mechanism of inhibition in MCF-7 cells.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Cinamatos/farmacologia , Fenilpropionatos/farmacologia , Própole/química , Tricotecenos/farmacologia , Aminoácidos/análise , Aminoácidos/síntese química , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cinamatos/análise , Cinamatos/síntese química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Fenilpropionatos/análise , Fenilpropionatos/síntese química , Própole/análise , Própole/síntese química , Própole/farmacologia , Relação Estrutura-Atividade , Tricotecenos/análise , Tricotecenos/síntese química
5.
Can J Physiol Pharmacol ; 99(8): 795-802, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33296274

RESUMO

Cardiac damage during the acute phase of Chagas disease (CD) is associated with an increase in pro-inflammatory markers and oxidative stress. Melatonin (MEL) has emerged as a promising therapy for CD due to its antioxidant and immunomodulatory properties; however, the protective action of MEL in the cardiac tissue, as well as its direct action on the parasite cycle, is not fully understood. We investigated the effects of MEL on heart parasitism in mice infected with Trypanosoma cruzi and also its effects on the parasitic proliferation in vitro. Our in vivo study showed that MEL reduced circulating parasitemia load, but did not control tissue (heart, liver, and spleen) parasitism in mice. MEL did not prevent the redox imbalance in the left ventricle of infected mice. Our in vitro findings showed that MEL did not inhibit parasites replication within cells, but rather increased their release from cells. MEL did not control parasitism load in the heart or prevent the cardiac redox imbalance induced by acute T. cruzi infection. The hormone controlled the circulating parasitic load, but within cells MEL accelerated parasitic release, a response that can be harmful.


Assuntos
Melatonina , Trypanosoma cruzi , Animais , Doença de Chagas , Coração , Camundongos
6.
Immunobiology ; 225(6): 152024, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33227693

RESUMO

Diseases associated with thyroid hypofunction have been the subject of studies in infectious models, since several authors have demonstrated a pivotal role of iodinated hormones (thyroxine and triiodothyronine) in the modulation of immune effector responses. Using a model of hypothyroidism induced by anti-thyroid drug, we investigated the influence of hypothyroidism in the course of acute Trypanosoma cruzi infection. For this, male Hannover Wistar rats were challenged with methimazole for 21 days (0.02% in drinking water), and water for control counterparts. After confirmation of the hypothyroidism, rats were intraperitoneally challenged with 1x105 blood trypomastigotes of the Y strain of T. cruzi. Our findings suggest that hypothyroidism impairs animal weight gain, but does not affect the health of essential organs. Interestingly, infected hypothyroid animals had a significant increase in thymic cell death, with consequent drop in lymphocyte frequency in whole blood (evaluated on the 11th day of infection). Analyzing the percentage of immune cells in the spleen, we found a strong influence of hypothyroidism as a negative regulator of B cells, and antigenic ability of macrophages (RT1b expression) in the course of the experimental chagasic infection. Enhanced serum IL-17A concentration was induced by T. cruzi infection, but hypothyroidism impaired the production of this mediator as seen in infected hypothyroid animals. Taken together, our work suggests for the first time that hypothyroidism may adversely interfere with the modulation of effective immunity in the early phase of Chagas' disease.


Assuntos
Doença de Chagas/complicações , Doença de Chagas/parasitologia , Interações Hospedeiro-Parasita/imunologia , Hipotireoidismo/etiologia , Imunidade , Doença Aguda , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hipotireoidismo/diagnóstico , Masculino , Ratos
7.
Dalton Trans ; 49(45): 16440-16452, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32776028

RESUMO

Trinuclear ruthenium complexes with orthometalated phenazines of general formula [Ru3(µ3-O)(µ2-OAc)5(L)(py)2]PF6 (L = dppn, benzo[i]dipyrido[3,2-a:2',3'-c]phenazine, 1; dppz, dipyrido[3,2-a:2',3'-c]phenazine, 2; CH3-dppz, 7-methyldipyrido[3,2-a:2',3'-c]phenazine, 3; Cl-dppz, 7-chlorodipyrido[3,2-a:2',3'-c]phenazine, 4) were investigated for their cytotoxic activity toward the B16F10 murine melanoma and the L929 non-cancer cell lines and against Trypanosoma cruzi (2-4). This study also reports a multi-technique investigation into how complexes 1-4 interact with DNA and human serum albumin, HSA. At concentrations ranging from 2 to 50 µM, all the complexes reduced B16F10 murine melanoma cell viability by over 50%. Complex 4 had the highest cytotoxic effect in the series, diminishing B16F10 cell viability to 38% at 2 µM, with an overall order for anticancer activity of 4 > 2 > 3 > 1. Complexes 2-4 showed remarkable activity in inhibiting epimastigote and amastigote forms of T. cruzi. Complex 2 showed better antitrypanosomal activity than the reference drug (IC50 = 1.19 µM and IC50 = 0.25 µM for epimastigote and amastigotes forms, respectivily). Ethidium bromide (EB) displacement assays showed that DNA intercalation progressively increases with the extension of the π-conjugation of the cyclometalating ligand and the presence of substituents in the phenazinic portion (1 > 4-3 > 2), showing that complex 1 is a stronger intercalator than EB itself (Kapp > 107 M-1). Viscosity measurements followed the same trend. Cytotoxicity against cancer cells and antitrypanosomal activity follow the same order, which is different to the tendency of DNA intercalation, suggesting DNA is not the main target of these complexes. Compound 1-4 showed very high affinity with HSA (Kb ∼109 M-1). Circular dichroism results also showed that the complexes alter significantly the secondary structure of the HSA, lowering the α-helix % from 86.2 (pure protein) to less than 5% for compounds 1, 2 and 4 at 2.8 µM. These findings demonstrated the important role of phenazines for the biological activity of triruthenium compounds.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Fenazinas/química , Trypanosoma/efeitos dos fármacos , Antiprotozoários/química , Antiprotozoários/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Humanos , Ligantes
8.
Rev. patol. trop ; 49(2)2020.
Artigo em Inglês | LILACS | ID: biblio-1100632

RESUMO

Selenium is an essential trace element which, at adequate levels, presents different beneficial biological effects, such as cancer regression, tissue development and protection against oxidative damage. The positive effects of this element are related to the expression of selenoproteins and their ability to modulate the immune system and the oxidative stress response. In Chagas disease and sleeping sickness, selenium supplementation has shown blood parasitism reduction and the alleviation of specific aspects of the diseases, such as diminishing anemia in sleeping sickness or minimization of myocardial and right ventricular chamber damage in Chagas disease. Although the influence of selenium in trypanosomiasis has been investigated, the direct effects of sodium selenite supplementation on trypanosome cells are poorly understood. Treatment of Trypanosoma cruzi cultures with low selenium doses demonstrated different results, according to the parasite evolutive form analyzed. Epimastigote cultures supplemented with 100 nM of sodium selenite presented cell growth increment, which varies from 10 to 40% according to the parasite strain assayed. Selenium concentration around 600nM leads to a 30% increase in the amastigote form number, whereas, at the same dose, the mammal host cell presented no cellular growth alteration. For the bloodstream form, the results agree with the literature, and all sodium selenite concentrations tested, demonstrated a reduction in parasite viability. The data suggest that selenium supplementation, under specific conditions, could increase T. cruzi viability, demonstrating that a strategy for using selenium as an adjuvant in Chagas disease treatment requires additional experimentation.


Assuntos
Selênio , Trypanosoma cruzi , Doença de Chagas , Selenito de Sódio
9.
Artigo em Inglês | MEDLINE | ID: mdl-29987143

RESUMO

The acute phase of Chagas disease (CD) is characterized by high parasitic proliferation and intense inflammation, exacerbating the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These reactive molecules are also increased by the metabolism of the nitroheterocyclic compounds benznidazole (BZ) and nifurtimox, the only drugs available for the treatment of CD. This oxidative environment, associated with the intracellular multiplication of Trypanosoma cruzi, leads to tissue destruction, triggering the pathogenic process. Both drugs have limited efficacy and serious side effects, which demonstrates the need to seek alternative therapies. Due to the difficulty in developing new drugs, reviewing therapeutic regimens appears advantageous, and the use of BZ in low doses associated with antioxidants, such as ascorbic acid (AA), would be a valid alternative to attenuate oxidative stress. In our in vivo studies, mice receiving the combination of 7.14 mg/kg of body weight/day AA and 10 mg/kg/day BZ10 (AA+BZ10) showed a reduction in parasitemia that was more effective than that with those receiving BZ or AA alone. The combined treatment was effective in decreasing intracellular ROS and lipid peroxidation in cardiac tissue. Histological and PCR analyzes showed that AA also reduced the cardiac parasitism. However, the greatest benefit was seen in AA+BZ10 group, since cardiac inflammation was significantly reduced. In addition, the combined therapy prevented the hepatic damage induced by the infection. Our findings suggest that AA combined with a low dose of BZ may improve the trypanocidal activity and attenuate the toxic effects of BZ. The decrease in oxidative damage and inflammation observed in mice treated with AA+BZ10 could result in increased cardioprotection.


Assuntos
Ácido Ascórbico/farmacologia , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Animais , Antioxidantes/metabolismo , Doença de Chagas/parasitologia , Quimioterapia Combinada/métodos , Inflamação/tratamento farmacológico , Inflamação/parasitologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
10.
Exp Parasitol ; 166: 189-93, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26183422

RESUMO

Chagas disease, Sleeping Sickness, Nagana and Leishmaniasis are serious infections caused by protozoa of the order Kinetoplastidae. They were described over a century ago by seminal work of different physician-researchers and, despite the initial discoveries, few drugs have been made available for the treatment of these infections. The drugs available present serious efficacy and toxicity problems. Moreover, the emergence of resistant strains has rendered the development of novel chemotherapeutic strategies a priority. Auranofin is currently in use to treat rheumatoid arthritis in humans. Previous reports showed that this compound presents activity against Trypanosoma brucei and Leishmania cells. In Trypanosoma cruzi cells, auranofin resulted in a more potent compound than benznidazole in vitro when tested in different DTUs. In vivo experiments, although not decreasing T. cruzi parasitemia, decreases host mortality. Therefore, we propose auranofin as a potential alternative for a new chemotherapy in Chagas disease with the added advantage of already being approved for use in humans.


Assuntos
Auranofina/farmacologia , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Auranofina/uso terapêutico , Linhagem Celular , Doença de Chagas/parasitologia , Feminino , Fibroblastos/parasitologia , Humanos , Concentração Inibidora 50 , Dose Letal Mediana , Camundongos , Camundongos Endogâmicos BALB C , Nitroimidazóis/farmacologia , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Distribuição Aleatória , Organismos Livres de Patógenos Específicos , Tripanossomicidas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA