RESUMO
This work discloses a unique, comprehensive proteomic dataset of Acinetobacter baumannii strains, both resistant and non-resistant to polymyxin B, isolated in Brazil generated using Orbitrap Fusion Lumos. From nearly 4 million tandem mass spectra, the software DiagnoMass produced 240,685 quality-filtered mass spectral clusters, of which PatternLab for proteomics identified 44,553 peptides mapping to 3479 proteins. Crucially, DiagnoMass shortlisted 3550 and 1408 unique mass spectral clusters for the resistant and non-resistant strains, respectively, with only about a third with sequences (and PTMs) identified by PatternLab. Further open-search attempts via FragPipe yielded an additional â¼20% identifications, suggesting the remaining unidentified spectra likely arise from complex combinations of post-translational modifications and amino-acid substitutions. This highlights the untapped potential of the dataset for future discoveries, particularly given the importance of PTMs, which remain elusive to nucleotide sequencing approaches but are crucial for understanding biological mechanisms. Our innovative approach extends beyond the identifications that are typically subjected to the bias of a search engine; we discern which spectral clusters are differential and subject them to increased scrutiny, akin to spectral library matching by comparing captured spectra to themselves. Our analysis reveals adaptations in the resistant strain, including enhanced detoxification, altered protein synthesis, and metabolic adjustments. SIGNIFICANCE: We present comprehensive proteomic profiles of non-resistant and resistant Acinetobacter baumannii from Brazilian Hospitals strains, and highlight the presence of discriminative and yet unidentified mass spectral clusters. Our work emphasizes the importance of exploring this overlooked data, as it could hold the key to understanding the complex dynamics of antibiotic resistance. This approach not only informs antimicrobial stewardship efforts but also paves the way for the development of innovative diagnostic tools. Thus, our findings have profound implications for the field, as far as methods for providing a new perspective on diagnosing antibiotic resistance as well as classifying proteomes in general.
Assuntos
Acinetobacter baumannii , Polimixinas , Polimixinas/metabolismo , Antibacterianos/farmacologia , Acinetobacter baumannii/metabolismo , Proteômica/métodos , Proteoma/metabolismo , Brasil , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade MicrobianaRESUMO
Cytochrome c (Cyt-c) has been previously shown to participate in cardiolipin (CL) oxidation and, therefore, in mitochondrial membrane permeabilization during the early events of apoptosis. The gain in this function has been ascribed to specific CL/Cyt-c interactions. Here we report that the cationic protein Cyt-c is also able to interact electrostatically with the main lipid components of the mitochondrial membranes, the zwitterionic lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE), through the mediation of phosphate anions that bind specifically to amino groups in the surfaces of protein and model membranes. In these complexes, Cyt-c reacts efficiently with H2O2 at submillimolar levels, which oxidizes the sulfur atom of the axial ligand Met80. The modified protein is stable and presents significantly enhanced peroxidatic activity. Based on these results, we postulate that the rise of H2O2 concentrations to the submillimolar levels registered during initiation of the apoptotic program may represent one signaling event that triggers the gain in peroxidatic function of the Cyt-c molecules bound to the abundant PE and PC membrane components. As the activated protein is a chemically stable species, it can potentially bind and oxidize important targets, such as CL.
RESUMO
Trypanosoma cruzi tryparedoxin 1 (TcTXN1) is an oxidoreductase belonging to the thioredoxin superfamily, which mediates electron transfer between trypanothione and peroxiredoxins. In trypanosomes TXNs, and not thioredoxins, constitute the oxido-reductases of peroxiredoxins. Since, to date, there is no information concerning TcTXN1 substrates in T. cruzi, the aim of this work was to characterize TcTXN1 in two aspects: expression throughout T. cruzi life cycle and subcellular localization; and the study of TcTXN1 interacting-proteins. We demonstrate that TcTXN1 is a cytosolic and constitutively expressed protein in T. cruzi. In order to start to unravel the redox interactome of T. cruzi we designed an active site mutant protein lacking the resolving cysteine, and validated the complex formation in vitro between the mutated TcTXN1 and a known partner, the cytosolic peroxiredoxin. Through the expression of this mutant protein in parasites with an additional 6xHis-tag, heterodisulfide complexes were isolated by affinity chromatography and identified by 2-DE/MS. This allowed us to identify fifteen TcTXN1 proteins which are involved in two main processes: oxidative metabolism and protein synthesis and degradation. Our approach led us to the discovery of several putatively TcTXN1-interacting proteins thereby contributing to our understanding of the redox interactome of T. cruzi.
Assuntos
Proteínas de Protozoários/metabolismo , Tiorredoxinas/análise , Trypanosoma cruzi/metabolismo , Domínio Catalítico/genética , Proteínas Mutantes , Oxirredução , Ligação Proteica , Proteínas de Protozoários/fisiologia , Especificidade por Substrato , Tiorredoxinas/metabolismoRESUMO
The cestodes constitute important but understudied human and veterinary parasites. Their surfaces are rich in carbohydrates, on which very little structural information is available. The tissue-dwelling larva (hydatid cyst) of the cestode Echinococcus granulosus is outwardly protected by a massive layer of carbohydrate-rich extracellular matrix, termed the laminated layer. The monosaccharide composition of this layer suggests that its major carbohydrate components are exclusively mucin-type O-glycans. We have purified these glycans after their release from the crude laminated layer and obtained by MS and NMR the complete structure of 10 of the most abundant components. The structures, between two and six residues in length, encompass a limited number of biosynthetic motifs. The mucin cores 1 and 2 are either nondecorated or elongated by a chain of Galpbeta1-3 residues. This chain can be capped by a single Galpalpha1-4 residue, such capping becoming more dominant with increasing chain size. In addition, the core 2 N-acetylglucosamine residue is in cases substituted with the disaccharide Galpalpha1-4Galpbeta1-4, giving rise to the blood P(1)-antigen motif. Larger, also related, glycans exist, reaching at least 18 residues in size. The glycans described are related but larger than those previously described from an Echinococcus multilocularis mucin [Hulsmeier, A. J., et al. (2002) J. Biol. Chem. 277, 5742-5748]. Our results reveal that the E. granulosus cyst exposes to the host only a few different major carbohydrate motifs. These motifs are composed essentially of galactose units and include the elongation by (Galpbeta1-3)(n) and the capping by Galpalpha1-4, novel in animal mucin-type O-glycans.