Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38260392

RESUMO

Neuroblastoma is a pediatric cancer arising from the developing sympathoadrenal lineage with complex inter- and intra-tumoral heterogeneity. To chart this complexity, we generated a comprehensive cell atlas of 55 neuroblastoma patient tumors, collected from two pediatric cancer institutions, spanning a range of clinical, genetic, and histologic features. Our atlas combines single-cell/nucleus RNA-seq (sc/scRNA-seq), bulk RNA-seq, whole exome sequencing, DNA methylation profiling, spatial transcriptomics, and two spatial proteomic methods. Sc/snRNA-seq revealed three malignant cell states with features of sympathoadrenal lineage development. All of the neuroblastomas had malignant cells that resembled sympathoblasts and the more differentiated adrenergic cells. A subset of tumors had malignant cells in a mesenchymal cell state with molecular features of Schwann cell precursors. DNA methylation profiles defined four groupings of patients, which differ in the degree of malignant cell heterogeneity and clinical outcomes. Using spatial proteomics, we found that neuroblastomas are spatially compartmentalized, with malignant tumor cells sequestered away from immune cells. Finally, we identify spatially restricted signaling patterns in immune cells from spatial transcriptomics. To facilitate the visualization and analysis of our atlas as a resource for further research in neuroblastoma, single cell, and spatial-omics, all data are shared through the Human Tumor Atlas Network Data Commons at www.humantumoratlas.org.

2.
Nat Genet ; 54(8): 1178-1191, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35902743

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Perfilação da Expressão Gênica , Humanos , Terapia Neoadjuvante , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Prognóstico , Transcriptoma/genética , Neoplasias Pancreáticas
3.
Nat Commun ; 13(1): 4398, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906236

RESUMO

Fetal growth restriction (FGR) affects 5-10% of pregnancies, and can have serious consequences for both mother and child. Prevention and treatment are limited because FGR pathogenesis is poorly understood. Genetic studies implicate KIR and HLA genes in FGR, however, linkage disequilibrium, genetic influence from both parents, and challenges with investigating human pregnancies make the risk alleles and their functional effects difficult to map. Here, we demonstrate that the interaction between the maternal KIR2DL1, expressed on uterine natural killer (NK) cells, and the paternally inherited HLA-C*0501, expressed on fetal trophoblast cells, leads to FGR in a humanized mouse model. We show that the KIR2DL1 and C*0501 interaction leads to pathogenic uterine arterial remodeling and modulation of uterine NK cell function. This initial effect cascades to altered transcriptional expression and intercellular communication at the maternal-fetal interface. These findings provide mechanistic insight into specific FGR risk alleles, and provide avenues of prevention and treatment.


Assuntos
Retardo do Crescimento Fetal , Trofoblastos , Animais , Comunicação Celular/genética , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Feto/metabolismo , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Camundongos , Gravidez , Trofoblastos/metabolismo
4.
Cell ; 185(16): 2918-2935.e29, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35803260

RESUMO

Neoadjuvant immune checkpoint blockade has shown promising clinical activity. Here, we characterized early kinetics in tumor-infiltrating and circulating immune cells in oral cancer patients treated with neoadjuvant anti-PD-1 or anti-PD-1/CTLA-4 in a clinical trial (NCT02919683). Tumor-infiltrating CD8 T cells that clonally expanded during immunotherapy expressed elevated tissue-resident memory and cytotoxicity programs, which were already active prior to therapy, supporting the capacity for rapid response. Systematic target discovery revealed that treatment-expanded tumor T cell clones in responding patients recognized several self-antigens, including the cancer-specific antigen MAGEA1. Treatment also induced a systemic immune response characterized by expansion of activated T cells enriched for tumor-infiltrating T cell clonotypes, including both pre-existing and emergent clonotypes undetectable prior to therapy. The frequency of activated blood CD8 T cells, notably pre-treatment PD-1-positive KLRG1-negative T cells, was strongly associated with intra-tumoral pathological response. These results demonstrate how neoadjuvant checkpoint blockade induces local and systemic tumor immunity.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral , Terapia Neoadjuvante , Neoplasias/terapia , Microambiente Tumoral
5.
Cell Chem Biol ; 29(2): 276-286.e4, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34990601

RESUMO

ß-Lactam antibiotics disrupt the assembly of peptidoglycan (PG) within the bacterial cell wall by inhibiting the enzymatic activity of penicillin-binding proteins (PBPs). It was recently shown that ß-lactam treatment initializes a futile cycle of PG synthesis and degradation, highlighting major gaps in our understanding of the lethal effects of PBP inhibition by ß-lactam antibiotics. Here, we assess the downstream metabolic consequences of treatment of Escherichia coli with the ß-lactam mecillinam and show that lethality from PBP2 inhibition is a specific consequence of toxic metabolic shifts induced by energy demand from multiple catabolic and anabolic processes, including accelerated protein synthesis downstream of PG futile cycling. Resource allocation into these processes is coincident with alterations in ATP synthesis and utilization, as well as a broadly dysregulated cellular redox environment. These results indicate that the disruption of normal anabolic-catabolic homeostasis by PBP inhibition is an essential factor for ß-lactam antibiotic lethality.


Assuntos
Andinocilina/farmacologia , Antibacterianos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Andinocilina/química , Antibacterianos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Homeostase/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/metabolismo
6.
Nature ; 592(7852): 128-132, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33536623

RESUMO

Tissue-resident innate lymphoid cells (ILCs) help sustain barrier function and respond to local signals. ILCs are traditionally classified as ILC1, ILC2 or ILC3 on the basis of their expression of specific transcription factors and cytokines1. In the skin, disease-specific production of ILC3-associated cytokines interleukin (IL)-17 and IL-22 in response to IL-23 signalling contributes to dermal inflammation in psoriasis. However, it is not known whether this response is initiated by pre-committed ILCs or by cell-state transitions. Here we show that the induction of psoriasis in mice by IL-23 or imiquimod reconfigures a spectrum of skin ILCs, which converge on a pathogenic ILC3-like state. Tissue-resident ILCs were necessary and sufficient, in the absence of circulatory ILCs, to drive pathology. Single-cell RNA-sequencing (scRNA-seq) profiles of skin ILCs along a time course of psoriatic inflammation formed a dense transcriptional continuum-even at steady state-reflecting fluid ILC states, including a naive or quiescent-like state and an ILC2 effector state. Upon disease induction, the continuum shifted rapidly to span a mixed, ILC3-like subset also expressing cytokines characteristic of ILC2s, which we inferred as arising through multiple trajectories. We confirmed the transition potential of quiescent-like and ILC2 states using in vitro experiments, single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) and in vivo fate mapping. Our results highlight the range and flexibility of skin ILC responses, suggesting that immune activities primed in healthy tissues dynamically adapt to provocations and, left unchecked, drive pathological remodelling.


Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Linfócitos/patologia , Psoríase/imunologia , Psoríase/patologia , Pele/imunologia , Pele/patologia , Animais , Diferenciação Celular , Linhagem da Célula , Cromatina/genética , Modelos Animais de Doenças , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-23/imunologia , Análise de Classes Latentes , Linfócitos/classificação , Masculino , Camundongos , Psoríase/genética , RNA Citoplasmático Pequeno/genética , Reprodutibilidade dos Testes , Fatores de Tempo
7.
Mol Ther ; 28(12): 2577-2592, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32755564

RESUMO

T cells engineered to express chimeric antigen receptors (CARs) targeting CD19 have produced impressive outcomes for the treatment of B cell malignancies, but different products vary in kinetics, persistence, and toxicity profiles based on the co-stimulatory domains included in the CAR. In this study, we performed transcriptional profiling of bulk CAR T cell populations and single cells to characterize the transcriptional states of human T cells transduced with CD3ζ, 4-1BB-CD3ζ (BBζ), or CD28-CD3ζ (28ζ) co-stimulatory domains at rest and after activation by triggering their CAR or their endogenous T cell receptor (TCR). We identified a transcriptional signature common across CARs with the CD3ζ signaling domain, as well as a distinct program associated with the 4-1BB co-stimulatory domain at rest and after activation. CAR T cells bearing BBζ had increased expression of human leukocyte antigen (HLA) class II genes, ENPP2, and interleukin (IL)-21 axis genes, and decreased PD1 compared to 28ζ CAR T cells. Similar to previous studies, we also found BBζ CAR CD8 T cells to be enriched in a central memory cell phenotype and fatty acid metabolism genes. Our data uncovered transcriptional signatures related to costimulatory domains and demonstrated that signaling domains included in CARs uniquely shape the transcriptional programs of T cells.


Assuntos
Ligante 4-1BB/química , Ligante 4-1BB/metabolismo , Engenharia Celular/métodos , Domínios Proteicos/genética , RNA Citoplasmático Pequeno/genética , Receptores de Antígenos Quiméricos/genética , Transdução de Sinais/genética , Linfócitos T/metabolismo , Transcriptoma , Células HEK293 , Humanos , Células K562 , RNA-Seq/métodos , Análise de Célula Única , Transdução Genética
8.
Cancer Cell ; 38(2): 229-246.e13, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32707077

RESUMO

Tumor evolution from a single cell into a malignant, heterogeneous tissue remains poorly understood. Here, we profile single-cell transcriptomes of genetically engineered mouse lung tumors at seven stages, from pre-neoplastic hyperplasia to adenocarcinoma. The diversity of transcriptional states increases over time and is reproducible across tumors and mice. Cancer cells progressively adopt alternate lineage identities, computationally predicted to be mediated through a common transitional, high-plasticity cell state (HPCS). Accordingly, HPCS cells prospectively isolated from mouse tumors and human patient-derived xenografts display high capacity for differentiation and proliferation. The HPCS program is associated with poor survival across human cancers and demonstrates chemoresistance in mice. Our study reveals a central principle underpinning intra-tumoral heterogeneity and motivates therapeutic targeting of the HPCS.


Assuntos
Plasticidade Celular/genética , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/citologia , Heterogeneidade Genética , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Análise de Célula Única/métodos , Transcriptoma/genética
9.
Nat Med ; 26(8): 1271-1279, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572264

RESUMO

Malignant abdominal fluid (ascites) frequently develops in women with advanced high-grade serous ovarian cancer (HGSOC) and is associated with drug resistance and a poor prognosis1. To comprehensively characterize the HGSOC ascites ecosystem, we used single-cell RNA sequencing to profile ~11,000 cells from 22 ascites specimens from 11 patients with HGSOC. We found significant inter-patient variability in the composition and functional programs of ascites cells, including immunomodulatory fibroblast sub-populations and dichotomous macrophage populations. We found that the previously described immunoreactive and mesenchymal subtypes of HGSOC, which have prognostic implications, reflect the abundance of immune infiltrates and fibroblasts rather than distinct subsets of malignant cells2. Malignant cell variability was partly explained by heterogeneous copy number alteration patterns or expression of a stemness program. Malignant cells shared expression of inflammatory programs that were largely recapitulated in single-cell RNA sequencing of ~35,000 cells from additionally collected samples, including three ascites, two primary HGSOC tumors and three patient ascites-derived xenograft models. Inhibition of the JAK/STAT pathway, which was expressed in both malignant cells and cancer-associated fibroblasts, had potent anti-tumor activity in primary short-term cultures and patient-derived xenograft models. Our work contributes to resolving the HSGOC landscape3-5 and provides a resource for the development of novel therapeutic approaches.


Assuntos
Ascite/genética , Cistadenoma Seroso/genética , Neoplasias Ovarianas/genética , Análise de Célula Única , Ascite/patologia , Linhagem Celular Tumoral , Cistadenoma Seroso/patologia , Variações do Número de Cópias de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Janus Quinase 1/genética , Gradação de Tumores , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/patologia , Prognóstico , Fatores de Transcrição STAT/genética , Análise de Sequência de RNA , Transdução de Sinais/genética
11.
Nat Med ; 26(5): 792-802, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405060

RESUMO

Single-cell genomics is essential to chart tumor ecosystems. Although single-cell RNA-Seq (scRNA-Seq) profiles RNA from cells dissociated from fresh tumors, single-nucleus RNA-Seq (snRNA-Seq) is needed to profile frozen or hard-to-dissociate tumors. Each requires customization to different tissue and tumor types, posing a barrier to adoption. Here, we have developed a systematic toolbox for profiling fresh and frozen clinical tumor samples using scRNA-Seq and snRNA-Seq, respectively. We analyzed 216,490 cells and nuclei from 40 samples across 23 specimens spanning eight tumor types of varying tissue and sample characteristics. We evaluated protocols by cell and nucleus quality, recovery rate and cellular composition. scRNA-Seq and snRNA-Seq from matched samples recovered the same cell types, but at different proportions. Our work provides guidance for studies in a broad range of tumors, including criteria for testing and selecting methods from the toolbox for other tumors, thus paving the way for charting tumor atlases.


Assuntos
Algoritmos , Núcleo Celular/genética , Genômica/métodos , Neoplasias/genética , RNA-Seq/métodos , Análise de Célula Única/métodos , Adulto , Animais , Núcleo Celular/química , Núcleo Celular/metabolismo , Criança , Biologia Computacional/métodos , Feminino , Congelamento , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Análise de Sequência de RNA/métodos , Células Tumorais Cultivadas , Sequenciamento do Exoma/métodos
12.
Immunity ; 51(4): 696-708.e9, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618654

RESUMO

Signaling abnormalities in immune responses in the small intestine can trigger chronic type 2 inflammation involving interaction of multiple immune cell types. To systematically characterize this response, we analyzed 58,067 immune cells from the mouse small intestine by single-cell RNA sequencing (scRNA-seq) at steady state and after induction of a type 2 inflammatory reaction to ovalbumin (OVA). Computational analysis revealed broad shifts in both cell-type composition and cell programs in response to the inflammation, especially in group 2 innate lymphoid cells (ILC2s). Inflammation induced the expression of exon 5 of Calca, which encodes the alpha-calcitonin gene-related peptide (α-CGRP), in intestinal KLRG1+ ILC2s. α-CGRP antagonized KLRG1+ ILC2s proliferation but promoted IL-5 expression. Genetic perturbation of α-CGRP increased the proportion of intestinal KLRG1+ ILC2s. Our work highlights a model where α-CGRP-mediated neuronal signaling is critical for suppressing ILC2 expansion and maintaining homeostasis of the type 2 immune machinery.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Inflamação/imunologia , Intestinos/imunologia , Linfócitos/imunologia , Neuropeptídeos/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Cultivadas , Biologia Computacional , Imunidade Inata , Interleucina-5/genética , Interleucina-5/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neuropeptídeos/genética , Receptores Imunológicos/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Células Th2/imunologia , Transcriptoma , Regulação para Cima
13.
Nat Protoc ; 14(8): 2595, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30976123

RESUMO

The version of this paper originally published contained reference errors. The sentence "To dissect complex genetic interactions in C. albicans, a CRISPR-Cas9-based Gene Drive Array (GDA) was developed" incorrectly cited ref. 13, and should have cited ref. 14. In addition, the reference included as ref. 13 in the original paper was incorrect, and should have been the following: Shapiro, R. S., Chavez, A. & Collins, J. J. CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nat. Rev. Microbiol. 16, 333-339 (2018). This reference should have been cited after the sentence "Recent innovations in CRISPR-Cas9-based genome editing have facilitated such genetic interaction analyses." The original reference 13 (Gerami-Nejad, M., Zacchi, L. F., McClellan, M., Matter, K. & Berman, J. Shuttle vectors for facile gap repair cloning and integration into a neutral locus in Candida albicans. Microbiology 159, 565-579 (2013)) should have been cited later in the paper, and is now in the reference list as ref. 27. As a result, original references 27-33 have been renumbered in the reference list and in the text. These changes have been made in the PDF and HTML versions of the protocol.

14.
Nat Protoc ; 14(3): 955-975, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30737491

RESUMO

The study of fungal pathogens is of immediate importance, yet progress is hindered by the technical challenges of genetic manipulation. For Candida species, their inability to maintain plasmids, unusual codon usage, and inefficient homologous recombination are among the obstacles limiting efficient genetic manipulation. New advances in genomic biotechnologies-particularly CRISPR-based tools-have revolutionized genome editing for many fungal species. Here, we present a protocol for CRISPR-Cas9-based manipulation in Candida albicans using a modified gene-drive-based strategy that takes ~1 month to complete. We detail the generation of Candida-optimized Cas9-based plasmids for gene deletion, an efficient transformation protocol using C. albicans haploids, and an optimized mating strategy to generate homozygous single- and double-gene diploid mutants. We further describe protocols for quantifying cell growth and analysis pipelines to calculate fitness and genetic interaction scores for genetic mutants. This protocol overcomes previous limitations associated with genetic manipulation in C. albicans and advances researchers' ability to perform genetic analysis in this pathogen; the protocol also has broad applicability to other mating-competent microorganisms.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Candida albicans/genética , Epistasia Genética , Deleção de Genes , Técnicas Genéticas , Diploide , Haploidia , Homozigoto , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Transformação Genética
15.
Nat Microbiol ; 3(1): 73-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29062088

RESUMO

Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based 'gene drive array' platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens.


Assuntos
Sistemas CRISPR-Cas , Candida albicans/genética , Tecnologia de Impulso Genético , Técnicas Genéticas , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Homozigoto , Virulência/genética
16.
Cell Chem Biol ; 24(2): 195-206, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28111098

RESUMO

Metabolically dormant bacteria present a critical challenge to effective antimicrobial therapy because these bacteria are genetically susceptible to antibiotic treatment but phenotypically tolerant. Such tolerance has been attributed to impaired drug uptake, which can be reversed by metabolic stimulation. Here, we evaluate the effects of central carbon metabolite stimulations on aminoglycoside sensitivity in the pathogen Pseudomonas aeruginosa. We identify fumarate as a tobramycin potentiator that activates cellular respiration and generates a proton motive force by stimulating the tricarboxylic acid (TCA) cycle. In contrast, we find that glyoxylate induces phenotypic tolerance by inhibiting cellular respiration with acetyl-coenzyme A diversion through the glyoxylate shunt, despite drug import. Collectively, this work demonstrates that TCA cycle activity is important for both aminoglycoside uptake and downstream lethality and identifies a potential strategy for potentiating aminoglycoside treatment of P. aeruginosa infections.


Assuntos
Antibacterianos/farmacologia , Carbono/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/metabolismo
17.
Cell Rep ; 13(5): 968-80, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26565910

RESUMO

Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (?-lactams, aminoglycosides, quinolones). These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products.


Assuntos
Ampicilina/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Canamicina/farmacologia , Norfloxacino/farmacologia , Estresse Oxidativo , Quebras de DNA de Cadeia Dupla
18.
Proc Natl Acad Sci U S A ; 112(27): 8173-80, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100898

RESUMO

Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes--the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Antibacterianos/classificação , Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Interações Medicamentosas , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Testes de Sensibilidade Microbiana , Mutação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA