Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 63(3): 611-623, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31873788

RESUMO

AIMS/HYPOTHESIS: Prediabetes is associated with postprandial hypertriacylglycerolaemia. Resistance exercise acutely lowers postprandial plasma triacylglycerol (TG); however, the changes in lipid metabolism that mediate this reduction are poorly understood. The aim of this study was to identify the constitutive metabolic mechanisms underlying the changes in postprandial lipid metabolism after resistance exercise in obese men with prediabetes. METHODS: We evaluated the effect of a single bout of whole-body resistance exercise (seven exercises, three sets, 10-12 repetitions at 80% of one-repetition maximum) on postprandial lipid metabolism in ten middle-aged (50 ± 9 years), overweight/obese (BMI: 33 ± 3 kg/m2), sedentary men with prediabetes (HbA1c >38 but <48 mmol/mol [>5.7% but <6.5%]), or fasting plasma glucose >5.6 mmol/l but <7.0 mmol/l or 2 h OGTT glucose >7.8 mmol/l but <11.1 mmol/l). We used a randomised, crossover design with a triple-tracer mixed meal test (ingested [(13C4)3]tripalmitin, i.v. [U-13C16]palmitate and [2H5]glycerol) to evaluate chylomicron-TG and total triacylglycerol-rich lipoprotein (TRL)-TG kinetics. We used adipose tissue and skeletal muscle biopsies to evaluate the expression of genes regulating lipolysis and lipid oxidation, skeletal muscle respirometry to evaluate oxidative capacity, and indirect calorimetry to assess whole-body lipid oxidation. RESULTS: The single bout of resistance exercise reduced the lipaemic response to a mixed meal in obese men with prediabetes without changing chylomicron-TG or TRL-TG fractional clearance rates. However, resistance exercise reduced endogenous and meal-derived fatty acid incorporation into chylomicron-TG and TRL-TG. Resistance exercise also increased whole-body lipid oxidation, skeletal muscle mitochondrial respiration, oxidative gene expression in skeletal muscle, and the expression of key lipolysis genes in adipose tissue. CONCLUSIONS/INTERPRETATION: A single bout of resistance exercise improves postprandial lipid metabolism in obese men with prediabetes, which may mitigate the risk for cardiovascular disease and type 2 diabetes.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Obesidade/terapia , Sobrepeso/terapia , Período Pós-Prandial/fisiologia , Estado Pré-Diabético/terapia , Treinamento Resistido , Adulto , Idoso , Quilomícrons/sangue , Quilomícrons/metabolismo , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Humanos , Resistência à Insulina/fisiologia , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Sobrepeso/complicações , Sobrepeso/metabolismo , Estado Pré-Diabético/complicações , Estado Pré-Diabético/metabolismo , Treinamento Resistido/métodos , Resultado do Tratamento , Triglicerídeos/sangue , Triglicerídeos/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(47): 23822-23828, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31694884

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme for cellular energy metabolism. The aim of the present study was to determine the importance of brown and white adipose tissue (BAT and WAT) NAD+ metabolism in regulating whole-body thermogenesis and energy metabolism. Accordingly, we generated and analyzed adipocyte-specific nicotinamide phosphoribosyltransferase (Nampt) knockout (ANKO) and brown adipocyte-specific Nampt knockout (BANKO) mice because NAMPT is the rate-limiting NAD+ biosynthetic enzyme. We found ANKO mice, which lack NAMPT in both BAT and WAT, had impaired gene programs involved in thermogenesis and mitochondrial function in BAT and a blunted thermogenic (rectal temperature, BAT temperature, and whole-body oxygen consumption) response to acute cold exposure, prolonged fasting, and administration of ß-adrenergic agonists (norepinephrine and CL-316243). In addition, the absence of NAMPT in WAT markedly reduced adrenergic-mediated lipolytic activity, likely through inactivation of the NAD+-SIRT1-caveolin-1 axis, which limits an important fuel source fatty acid for BAT thermogenesis. These metabolic abnormalities were rescued by treatment with nicotinamide mononucleotide (NMN), which bypasses the block in NAD+ synthesis induced by NAMPT deficiency. Although BANKO mice, which lack NAMPT in BAT only, had BAT cellular alterations similar to the ANKO mice, BANKO mice had normal thermogenic and lipolytic responses. We also found NAMPT expression in supraclavicular adipose tissue (where human BAT is localized) obtained from human subjects increased during cold exposure, suggesting our finding in rodents could apply to people. These results demonstrate that adipose NAMPT-mediated NAD+ biosynthesis is essential for regulating adaptive thermogenesis, lipolysis, and whole-body energy metabolism.


Assuntos
Adaptação Fisiológica , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Homeostase , NAD/biossíntese , Termogênese , Tecido Adiposo Marrom/enzimologia , Animais , Caveolina 1/antagonistas & inibidores , Temperatura Baixa , Citocinas/genética , Jejum , Humanos , Camundongos , Camundongos Knockout , Mononucleotídeo de Nicotinamida/administração & dosagem , Nicotinamida Fosforribosiltransferase/genética
3.
Am J Physiol Endocrinol Metab ; 315(4): E520-E530, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29634313

RESUMO

Mitochondrial dysfunction in adipose tissue is involved in the pathophysiology of obesity-induced systemic metabolic complications, such as type 2 diabetes, insulin resistance, and dyslipidemia. However, the mechanisms responsible for obesity-induced adipose tissue mitochondrial dysfunction are not clear. The aim of present study was to test the hypothesis that nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin-3 (SIRT3) in adipocytes plays a critical role in adipose tissue mitochondrial biology and obesity. We first measured adipose tissue SIRT3 expression in obese and lean mice. Next, adipocyte-specific mitochondrial Sirt3 knockout (AMiSKO) mice were generated and metabolically characterized. We evaluated glucose and lipid metabolism in adult mice fed either a regular-chow diet or high-fat diet (HFD) and in aged mice. We also determined the effects of Sirt3 deletion on adipose tissue metabolism and mitochondrial biology. Supporting our hypothesis, obese mice had decreased SIRT3 gene and protein expression in adipose tissue. However, despite successful knockout of SIRT3, AMiSKO mice had normal glucose and lipid metabolism and did not change metabolic responses to HFD-feeding and aging. In addition, loss of SIRT3 had no major impact on putative SIRT3 targets, key metabolic pathways, and mitochondrial function in white and brown adipose tissue. Collectively, these findings suggest that adipocyte SIRT3 is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Contrary to our hypothesis, loss of SIRT3 function in adipocytes is unlikely to contribute to the pathophysiology of obesity-induced metabolic complications.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Sirtuína 3/genética , Animais , Dieta Hiperlipídica , Camundongos , Camundongos Knockout , Camundongos Obesos , Sirtuína 3/metabolismo
4.
Diabetes ; 66(7): 1871-1878, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28473464

RESUMO

Systemic hyperaminoacidemia, induced by either intravenous amino acid infusion or protein ingestion, reduces insulin-stimulated glucose disposal. Studies of mice suggest that the valine metabolite 3-hydroxyisobutyrate (3-HIB), fibroblast growth factor 21 (FGF21), adiponectin, and nonesterified fatty acids (NEFAs) may be involved in amino acid-mediated insulin resistance. We therefore measured in 30 women the rate of glucose disposal, and plasma 3-HIB, FGF21, adiponectin, and NEFA concentrations, under basal conditions and during a hyperinsulinemic-euglycemic clamp procedure (HECP), with and without concomitant ingestion of protein (n = 15) or an amount of leucine that matched the amount of protein (n = 15). We found that during the HECP without protein or leucine ingestion, the grand mean ± SEM plasma 3-HIB concentration decreased (from 35 ± 2 to 14 ± 1 µmol/L) and the grand median [quartiles] FGF21 concentration increased (from 178 [116, 217] to 509 [340, 648] pg/mL). Ingestion of protein, but not leucine, decreased insulin-stimulated glucose disposal (P < 0.05) and prevented both the HECP-mediated decrease in 3-HIB and increase in FGF21 concentration in plasma. Neither protein nor leucine ingestion altered plasma adiponectin or NEFA concentrations. These findings suggest that 3-HIB and FGF21 might be involved in protein-mediated insulin resistance in humans.


Assuntos
Adiponectina/metabolismo , Glicemia/metabolismo , Proteínas Alimentares/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hidroxibutiratos/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina , Insulina/farmacologia , Leucina/farmacologia , Idoso , Aminoácidos , Ingestão de Alimentos , Feminino , Fatores de Crescimento de Fibroblastos/efeitos dos fármacos , Técnica Clamp de Glucose , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA