RESUMO
Interest in myelin and its roles in almost all brain functions has been greatly increasing in recent years, leading to countless new studies on myelination, as a dominant process in the development of cognitive functions. Here, we explore the unique role myelin plays in the central nervous system and specifically discuss the results of altered myelination in neurodevelopmental disorders. We present parallel developmental trajectories involving myelination that correlate with the onset of cognitive impairment in neurodevelopmental disorders and discuss the key challenges in the treatment of these chronic disorders. Recent developments in drug repurposing and nano/micro particle-based therapies are reviewed as a possible pathway to circumvent some of the main hurdles associated with early intervention, including patient's adherence and compliance, side effects, relapse, and faster route to possible treatment of these disorders. The strategy of drug encapsulation overcomes drug solubility and metabolism, with the possibility of drug targeting to a specific compartment, reducing side effects upon systemic administration.
Assuntos
Bainha de Mielina , Transtornos do Neurodesenvolvimento , Humanos , Bainha de Mielina/metabolismo , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/metabolismo , Sistemas de Liberação de Medicamentos , Oligodendroglia/metabolismoRESUMO
The sodium, potassium, and chloride cotransporter 1 (NKCC1) plays a key role in tightly regulating ion shuttling across cell membranes. Lately, its aberrant expression and function have been linked to numerous neurological disorders and cancers, making it a novel and highly promising pharmacological target for therapeutic interventions. A better understanding of how NKCC1 dynamically operates would therefore have broad implications for ongoing efforts toward its exploitation as a therapeutic target through its modulation. Based on recent structural data on NKCC1, we reveal conformational motions that are key to its function. Using extensive deep-learning-guided atomistic simulations of NKCC1 models embedded into the membrane, we captured complex dynamical transitions between alternate open conformations of the inner and outer vestibules of the cotransporter and demonstrated that NKCC1 has water-permeable states. We found that these previously undefined conformational transitions occur via a rocking-bundle mechanism characterized by the cooperative angular motion of transmembrane helices (TM) 4 and 9, with the contribution of the extracellular tip of TM 10. We found these motions to be critical in modulating ion transportation and in regulating NKCC1's water transporting capabilities. Specifically, we identified interhelical dynamical contacts between TM 10 and TM 6, which we functionally validated through mutagenesis experiments of 4 new targeted NKCC1 mutants. We conclude showing that those 4 residues are highly conserved in most Na+-dependent cation chloride cotransporters (CCCs), which highlights their critical mechanistic implications, opening the way to new strategies for NKCC1's function modulation and thus to potential drug action on selected CCCs.
Assuntos
Cloretos , Água , Membro 2 da Família 12 de Carreador de Soluto/química , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Cloretos/metabolismo , Mutagênese , Cátions/metabolismo , Água/metabolismoRESUMO
Stroke is responsible for 11% of all deaths worldwide, the majority of which are caused by ischemic strokes, thus making the need to urgently find safe and effective therapies. Today, these can be cured either by mechanical thrombectomy when the thrombus is accessible, or by intravenous injection of fibrinolytics. However, the latter present several limitations, such as potential severe side effects, few eligible patients and low rate of partial and full recovery. To design safer and more effective treatments, nanomedicine appeared in this medical field a few decades ago. This review will explain why nanoparticle-based therapies and imaging techniques are relevant for ischemic stroke management. Then, it will present the different nanoparticle types that have been recently developed to treat this pathology. It will also study the various targeting strategies used to bring nanoparticles to the stroke site, thereby limiting side effects and improving the therapeutic efficacy. Finally, this review will present the few clinical studies testing nanomedicine on stroke and discuss potential causes for their scarcity.
RESUMO
Mammalian peptide transporters, PepT1 and PepT2, mediate uptake of small peptides and are essential for their absorption. PepT also mediates absorption of many drugs and prodrugs to enhance their bioavailability. PepT has twelve transmembrane (TM) helices that fold into an N-terminal domain (NTD, TM1-6) and a C-terminal domain (CTD, TM7-12) and has a large extracellular domain (ECD) between TM9-10. It is well recognized that peptide transport requires movements of the NTD and CTD, but the role of the ECD in PepT1 remains unclear. Here we report the structure of horse PepT1 encircled in lipid nanodiscs and captured in the inward-open apo conformation. The structure shows that the ECD bridges the NTD and CTD by interacting with TM1. Deletion of ECD or mutations to the ECD-TM1 interface impairs the transport activity. These results demonstrate an important role of ECD in PepT1 and enhance our understanding of the transport mechanism in PepT1.
Assuntos
Simportadores , Animais , Transporte Biológico , Cavalos , Mamíferos/metabolismo , Conformação Molecular , Transportador 1 de Peptídeos/genética , Peptídeos , Simportadores/genética , Simportadores/metabolismoRESUMO
Cation-coupled chloride cotransporters (CCCs) modulate the transport of sodium and/or potassium cations coupled with chloride anions across the cell membrane. CCCs thus help regulate intracellular ionic concentration and consequent cell volume homeostasis. This has been largely exploited in the past to develop diuretic drugs that act on CCCs expressed in the kidney. However, a growing wealth of evidence has demonstrated that CCCs are also critically involved in a great variety of other pathologies, motivating most recent drug discovery programs targeting CCCs. Here, we examine the structure-function relationship of CCCs. By linking recent high-resolution cryogenic electron microscopy (cryo-EM) data with older biochemical/functional studies on CCCs, we discuss the mechanistic insights and opportunities to design selective CCC modulators to treat diverse pathologies.
RESUMO
Intracellular chloride concentration [Cl-]i is defective in several neurological disorders. In neurons, [Cl-]i is mainly regulated by the action of the Na+-K+-Cl- importer NKCC1 and the K+-Cl- exporter KCC2. Recently, we have reported the discovery of ARN23746 as the lead candidate of a novel class of selective inhibitors of NKCC1. Importantly, ARN23746 is able to rescue core symptoms of Down syndrome (DS) and autism in mouse models. Here, we describe the discovery and extensive characterization of this chemical class of selective NKCC1 inhibitors, with focus on ARN23746 and other promising derivatives. In particular, we present compound 40 (ARN24092) as a backup/follow-up lead with in vivo efficacy in a mouse model of DS. These results further strengthen the potential of this new class of compounds for the treatment of core symptoms of brain disorders characterized by the defective NKCC1/KCC2 expression ratio.
Assuntos
Síndrome de Down/tratamento farmacológico , Desenho de Fármacos , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Síndrome de Down/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Carbon-based nanomaterials (CNMs) are being explored for neurological applications. However, systematic in vivo studies investigating the effects of CNM nanocarriers in the brain and how brain cells respond to such nanomaterials are scarce. To address this, functionalized multiwalled carbon nanotubes and graphene oxide (GO) sheets are injected in mice brain and compared with charged liposomes. The induction of acute neuroinflammatory and neurotoxic effects locally and in brain structures distant from the injection site are assessed up to 1 week postadministration. While significant neuronal cell loss and sustained microglial cell activation are observed after injection of cationic liposomes, none of the tested CNMs induces either neurodegeneration or microglial activation. Among the candidate nanocarriers tested, GO sheets appear to elicit the least deleterious neuroinflammatory profile. At molecular level, GO induces moderate activation of proinflammatory markers compared to vehicle control. At histological level, brain response to GO is lower than after vehicle control injection, suggesting some capacity for GO to reduce the impact of stereotactic injection on brain. While these findings are encouraging and valuable in the selection and design of nanomaterial-based brain delivery systems, they warrant further investigations to better understand the mechanisms underlying GO immunomodulatory properties in brain.
RESUMO
The olfactory neuroepithelium is located in the upper vault of the nasal cavity, lying on the olfactory cleft and projecting into the dorsal portion of the superior and middle turbinates beyond the mid-portion of the nasal septum. It is composed of a variety of cell types including olfactory sensory neurons, supporting glial-like cells, microvillar cells, and basal stem cells. The cells of the neuroepithelium are often intermingled with respiratory and metaplastic epithelial cells. Olfactory neurons undergo a constant self-renewal in the timespan of 2-3 months; they are directly exposed to the external environment, and thus they are vulnerable to physical and chemical injuries. The latter might induce metabolic perturbations and ultimately be the cause of cell death. However, the lifespan of olfactory neurons is biologically programmed, and for this reason, these cells have an accelerated metabolic cycle leading to an irreversible apoptosis. These characteristics make these cells suitable for research related to nerve cell degeneration and aging. Recent studies have shown that a non-invasive and painless olfactory brushing procedure allows an efficient sampling from the olfactory neuroepithelium. This approach allows to detect the pathologic prion protein in patients with sporadic Creutzfeldt-Jakob disease, using the real-time quaking-induced conversion assay. Investigating the expression of all the proteins associated to neurodegeneration in the cells of the olfactory mucosa is a novel approach toward understanding the pathogenesis of human neurodegenerative diseases. Our aim was to investigate the expression of α-synuclein, ß-amyloid, tau, and TDP-43 in the olfactory neurons of normal subjects. We showed that these proteins that are involved in neurodegenerative diseases are expressed in olfactory neurons. These findings raise the question on whether a relationship exists between the mechanisms of protein aggregation that occur in the olfactory bulb during the early stage of the neurodegenerative process and the protein misfolding occurring in the olfactory neuroepithelium.
RESUMO
For targeted brain delivery, nanoparticles (NPs) should bypass the blood-brain barrier (BBB). Novel functionalization strategies, based on low-density lipoprotein receptor (LDLR) binding domain, have been here tested to increase the brain targeting efficacy of poly d,l-lactic-co-glycolic acid (PLGA) NPs, biodegradable and suited for biomedical applications. Custom-made PLGA NPs were functionalized with an apolipoprotein E modified peptide (pep-apoE) responsible for LDLR binding, or with lipocalin-type prostaglandin-d-synthase (L-PGDS), highly expressed in the brain. At the comparison of pep-apoE and L-PGDS sequences, a highly homologs region was here identified, indicating that also L-PGDS could bind LDLR. Non-functionalized and functionalized NPs did not affect the viability of cultured human dendritic cells, protagonists of the immune response, and did not activate them to a proinflammatory profile. At 2 h after intravenous injection in mice, functionalized, but not the non-functionalized ones, fluorescent-tagged NPs were observed in the cerebral cortex parenchyma. The NPs were mostly internalized by neurons and microglia; glial cells showed a weak activation. The findings indicate that the tested functionalization strategies do not elicit adverse immune responses and that the peptidic moieties enable BBB traversal of the NPs, thus providing potential brain drug carriers. These could be especially effective for brain diseases in which LDLR is involved. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 847-858, 2017.
Assuntos
Barreira Hematoencefálica/metabolismo , Córtex Cerebral/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Oxirredutases Intramoleculares , Ácido Láctico , Lipocalinas , Nanopartículas , Peptídeos , Ácido Poliglicólico , Receptores de LDL/química , Apolipoproteínas E/química , Apolipoproteínas E/farmacocinética , Apolipoproteínas E/farmacologia , Feminino , Humanos , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/farmacocinética , Oxirredutases Intramoleculares/farmacologia , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Lipocalinas/química , Lipocalinas/farmacocinética , Lipocalinas/farmacologia , Masculino , Nanopartículas/química , Nanopartículas/uso terapêutico , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido PoliglicólicoRESUMO
AIM: To unravel key aspects of the use of lanthanide-doped nanoparticles (NPs) in biomedicine, the interaction with immune and brain cells. MATERIALS & METHODS: Effects of citrate-stabilized CaF2 and SrF2: Yb, Er NPs (13-15 nm) on human dendritic cells and neurons were assessed in vitro. In vivo distribution was analyzed in mice at tissue and ultrastructural levels, and with glia immunophenotyping. RESULTS: The NPs did not elicit dendritic cell activation and were internalized by cultured neurons, without viability changes. After intravenous injection, NPs were found in the brain parenchyma, without features of glial neuroinflammatory response. CONCLUSION: Lanthanide-doped NPs do not activate cells protagonists of systemic and brain immune responses, are endocytosed by neurons and can cross an intact blood-brain barrier.
Assuntos
Encéfalo/diagnóstico por imagem , Ácido Cítrico/química , Células Dendríticas/metabolismo , Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Neurônios/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/imunologia , Fluoreto de Cálcio/química , Sobrevivência Celular , Células Cultivadas , Células Dendríticas/imunologia , Endocitose , Európio/química , Humanos , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Neuroglia/imunologia , Neuroglia/metabolismo , Imagem Óptica , Tamanho da Partícula , Permeabilidade , Estrôncio/química , Distribuição Tecidual , Itérbio/químicaRESUMO
In the last decades, molecular docking has emerged as an increasingly useful tool in the modern drug discovery process, but it still needs to overcome many hurdles and limitations such as how to account for protein flexibility and poor scoring function performance. For this reason, it has been recognized that in many cases docking results need to be post-processed to achieve a significant agreement with experimental activities. In this study, we have evaluated the performance of MM-PBSA and MM-GBSA scoring functions, implemented in our post-docking procedure BEAR, in rescoring docking solutions. For the first time, the performance of this post-docking procedure has been evaluated on six different biological targets (namely estrogen receptor, thymidine kinase, factor Xa, adenosine deaminase, aldose reductase, and enoyl ACP reductase) by using i) both a single and a multiple protein conformation approach, and ii) two different software, namely AutoDock and LibDock. The assessment has been based on two of the most important criteria for the evaluation of docking methods, i.e., the ability of known ligands to enrich the top positions of a ranked database with respect to molecular decoys, and the consistency of the docking poses with crystallographic binding modes. We found that, in many cases, MM-PBSA and MM-GBSA are able to yield higher enrichment factors compared to those obtained with the docking scoring functions alone. However, for only a minority of the cases, the enrichment factors obtained by using multiple protein conformations were higher than those obtained by using only one protein conformation.
Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Algoritmos , Modelos Moleculares , Conformação Proteica , Propriedades de SuperfícieRESUMO
BEAR (binding estimation after refinement) is a new virtual screening technology based on the conformational refinement of docking poses through molecular dynamics and prediction of binding free energies using accurate scoring functions. Here, the authors report the results of an extensive benchmark of the BEAR performance in identifying a smaller subset of known inhibitors seeded in a large (1.5 million) database of compounds. BEAR performance proved strikingly better if compared with standard docking screening methods. The validations performed so far showed that BEAR is a reliable tool for drug discovery. It is fast, modular, and automated, and it can be applied to virtual screenings against any biological target with known structure and any database of compounds.