Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 187: 106500, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104674

RESUMO

Cyanobacteria have been recognized for their advantageous impact on plant growth and development. The application of certain techniques has the potential to enhance various aspects of plant development, including growth, yield, proximate content (such as protein and carbohydrate levels), as well as the ability to withstand abiotic stresses such as herbicide exposure. The current investigation focused on examining the influence of bioactive compounds derived from the cyanobacterium Neowestiellopsis persica strain A1387 on enhancing the antioxidant and anyimicrobial activity of wheat plants in their defense against the plant pathogenic Sunn pest. The findings of the study indicate that the levels of H2O2 and GPx in wheat plants that were infected with aphids were significantly elevated compared to the treatments where aphids and cyanobacteria extract were present. The confirmation of these results was achieved through the utilization of confocal and fluorescent microscope tests, respectively. Furthermore, the findings indicated that the constituents of the cyanobacterial extract augmented the plant's capacity to withstand stress by enhancing its defense mechanisms. In a broader context, the utilization of cyanobacterial extract demonstrated the ability to regulate the generation and impact of oxygen (O2) and hydrogen peroxide (H2O2), while concurrently enhancing the functionality of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzymes within wheat plants. This facilitation enabled the plants to effectively manage oxidative stress. Moreover, the findings of the antibacterial activity assessment conducted on the extract derived from cyanobacteria demonstrated notable susceptibility. The bacteria that exhibited the highest sensitivity to the extract of cyanobacterium Neowestiellopsis persica strain A1387 were staphylococcus aureus and pseudomonas aeruginosa. Conversely, salmonella typhi demonstrated the greatest resistance to the aforementioned extract. The potential impact of cyanobacteria extract on the antioxidative response of wheat plants to sunn pest infestation represents a novel contribution to the existing body of knowledge on the interaction between wheat plants and aphids.


Assuntos
Anti-Infecciosos , Cianobactérias , Praguicidas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Triticum/microbiologia , Praguicidas/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Oxigênio/metabolismo , Cianobactérias/metabolismo , Anti-Infecciosos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
2.
Mini Rev Med Chem ; 22(8): 1131-1151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34720080

RESUMO

Different biological methods based on bioactivity are available to detect cyanotoxins, including neurotoxicity, immunological interactions, hepatotoxicity, cytotoxicity, and enzymatic activity. The mouse bioassay is the first test employed in laboratory cultures, cell extracts, and water bloom materials to detect toxins. It is also used as a traditional method to estimate the LD50. Concerning the ease of access and low cost, it is the most common method for this purpose. In this method, a sample is injected intraperitoneally into adult mice, and accordingly, they are assayed and monitored for about 24 hours for toxic symptoms. The toxin can be detected using this method from minutes to a few hours; its type, e.g., hepatotoxin, neurotoxin, etc., can also be determined. However, this method is nonspecific, fails to detect low amounts, and cannot distinguish between homologues. Although the mouse bioassay is gradually replaced with new chemical and immunological methods, it is still the main technique to detect the bioactivity and efficacy of cyanotoxins using LD50 determined based on the survival time of animals exposed to the toxin. In addition, some countries oppose animal use in toxicity studies. However, high cost, ethical considerations, low-sensitivity, non-specificity, and prolonged processes persuade researchers to employ chemical and functional analysis techniques. The qualitative and quantitative analyses, as well as high specificity and sensitivity, are among the advantages of cytotoxicity tests to investigate cyanotoxins. The present study aimed at reviewing the results obtained from in vitro and in vivo investigations of the mouse bioassay to detect cyanotoxins, including microcystins, cylindrospermopsin, saxitoxins, etc.


Assuntos
Toxinas de Cianobactérias , Cianobactérias , Animais , Bioensaio/métodos , Cianobactérias/metabolismo , Toxinas de Cianobactérias/toxicidade , Camundongos , Microcistinas/toxicidade
3.
Phytochemistry ; 192: 112959, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34649057

RESUMO

Plant-cyanobacteria interactions occur in different ways and at many different levels, both beneficial and harmful. Plant-cyanobacteria interactions, as a beneficial symbiosis, have long been demonstrated in rice-growing areas (Poaceae) where the most efficient nitrogen-fixing cyanobacteria are present in paddies. Moreover, cyanobacteria may in turn produce and/or secrete numerous bioactive compounds that have plant growth-promoting abilities or that may make the plant more resistant to abiotic or biotic stress. In recent years, there has been a growing worldwide interest in the use of cyanobacterial biomass as biofertilizers to replace chemical fertilizers, in part to overcome increasing organic-farming demands. However, the potential presence of harmful cyanotoxins has delayed the use of such cyanobacterial biomass, which can be found in large quantities in freshwater ecosystems around the world. In this review, we describe the existing evidence for the positive benefit of plant-cyanobacteria interactions and discuss the use of cyanobacterial biomass as biofertilizers and its growing worldwide interest. Although mass cyanobacterial blooms and scums are a current and emerging threat to the degradation of ecosystems and to animal and human health, they may serve as a source of numerous bioactive compounds with multiple positive effects that could be of use as an alternative to chemical fertilizers in the context of sustainable development.


Assuntos
Cianobactérias , Ecossistema , Animais , Água Doce , Humanos , Plantas , Solo
4.
J Appl Toxicol ; 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33289164

RESUMO

Cyanobacteria are well recognised as producers of a wide range of natural compounds that are in turn recognised as toxins that have potential and useful applications in the future as pharmaceutical agents. The order Nostocales, which is largely overlooked in this regard, has become increasingly recognised as a source of toxin producers including Anabaena, Nostoc, Hapalosiphon, Fischerella, Anabaenopsis, Aphanizomenon, Gloeotrichia, Cylindrospermopsis, Scytonema, Raphidiopsis, Cuspidothrix, Nodularia, Stigonema, Calothrix, Cylindrospermum and Desmonostoc species. The toxin compounds (i.e., microcystins, nodularin, anatoxins, ambiguines, fischerindoles and welwitindolinones) and metabolites are about to have a destructive effect on both inland and aquatic environment aspects. The present review gives an overview of the various toxins that are extracted by the order Nostocales. The current research suggests that these compounds that are produced by cyanobacterial species have promising future considerations as potentially harmful algae and as promising leads for drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA