Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
EMBO Mol Med ; 16(1): 93-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177534

RESUMO

Antimicrobial resistance is a global problem, rendering conventional treatments less effective and requiring innovative strategies to combat this growing threat. The tripartite AcrAB-TolC efflux pump is the dominant constitutive system by which Enterobacterales like Escherichia coli and Klebsiella pneumoniae extrude antibiotics. Here, we describe the medicinal chemistry development and drug-like properties of BDM91288, a pyridylpiperazine-based AcrB efflux pump inhibitor. In vitro evaluation of BDM91288 confirmed it to potentiate the activity of a panel of antibiotics against K. pneumoniae as well as revert clinically relevant antibiotic resistance mediated by acrAB-tolC overexpression. Using cryo-EM, BDM91288 binding to the transmembrane region of K. pneumoniae AcrB was confirmed, further validating the mechanism of action of this inhibitor. Finally, proof of concept studies demonstrated that oral administration of BDM91288 significantly potentiated the in vivo efficacy of levofloxacin treatment in a murine model of K. pneumoniae lung infection.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacologia , Klebsiella pneumoniae/metabolismo , Escherichia coli , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/farmacologia
2.
Biol Chem ; 404(7): 715-725, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36916166

RESUMO

Substrate-binding proteins (SBPs) are part of solute transport systems and serve to increase substrate affinity and uptake rates. In contrast to primary transport systems, the mechanism of SBP-dependent secondary transport is not well understood. Functional studies have thus far focused on Na+-coupled Tripartite ATP-independent periplasmic (TRAP) transporters for sialic acid. Herein, we report the in vitro functional characterization of TAXIPm-PQM from the human pathogen Proteus mirabilis. TAXIPm-PQM belongs to a TRAP-subfamily using a different type of SBP, designated TRAP-associated extracytoplasmic immunogenic (TAXI) protein. TAXIPm-PQM catalyzes proton-dependent α-ketoglutarate symport and its SBP is an essential component of the transport mechanism. Importantly, TAXIPm-PQM represents the first functionally characterized SBP-dependent secondary transporter that does not rely on a soluble SBP, but uses a membrane-anchored SBP instead.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico
3.
Antibiotics (Basel) ; 12(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36671381

RESUMO

Antimicrobial resistance (AMR) has become a major problem in public health leading to an estimated 4.95 million deaths in 2019. The selective pressure caused by the massive and repeated use of antibiotics has led to bacterial strains that are partially or even entirely resistant to known antibiotics. AMR is caused by several mechanisms, among which the (over)expression of multidrug efflux pumps plays a central role. Multidrug efflux pumps are transmembrane transporters, naturally expressed by Gram-negative bacteria, able to extrude and confer resistance to several classes of antibiotics. Targeting them would be an effective way to revive various options for treatment. Many efflux pump inhibitors (EPIs) have been described in the literature; however, none of them have entered clinical trials to date. This review presents eight families of EPIs active against Escherichia coli or Pseudomonas aeruginosa. Structure-activity relationships, chemical synthesis, in vitro and in vivo activities, and pharmacological properties are reported. Their binding sites and their mechanisms of action are also analyzed comparatively.

4.
Proc Natl Acad Sci U S A ; 119(14): e2107994119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363566

RESUMO

Persistence of Acinetobacter baumannii in environments with low water activity is largely attributed to the biosynthesis of compatible solutes. Mannitol is one of the key compatible solutes in A. baumannii, and it is synthesized by a bifunctional mannitol-1-phosphate dehydrogenase/phosphatase (AbMtlD). AbMtlD catalyzes the conversion of fructose-6-phosphate to mannitol in two consecutive steps. Here, we report the crystal structure of dimeric AbMtlD, constituting two protomers each with a dehydrogenase and phosphatase domain. A proper assembly of AbMtlD dimer is facilitated by an intersection comprising a unique helix­loop­helix (HLH) domain. Reduction and dephosphorylation catalysis of fructose-6-phosphate to mannitol is dependent on the transient dimerization of AbMtlD. AbMtlD presents as a monomer under lower ionic strength conditions and was found to be mainly dimeric under high-salt conditions. The AbMtlD catalytic efficiency was markedly increased by cross-linking the protomers at the intersected HLH domain via engineered disulfide bonds. Inactivation of the AbMtlD phosphatase domain results in an intracellular accumulation of mannitol-1-phosphate in A. baumannii, leading to bacterial growth impairment upon salt stress. Taken together, our findings demonstrate that salt-induced dimerization of the bifunctional AbMtlD increases catalytic dehydrogenase and phosphatase efficiency, resulting in unidirectional catalysis of mannitol production.


Assuntos
Acinetobacter baumannii , Sequências Hélice-Alça-Hélice , Manitol , Desidrogenase do Álcool de Açúcar , Acinetobacter baumannii/enzimologia , Manitol/metabolismo , Pressão Osmótica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Estresse Salino , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo
5.
Nat Commun ; 13(1): 115, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013254

RESUMO

Efflux transporters of the RND family confer resistance to multiple antibiotics in Gram-negative bacteria. Here, we identify and chemically optimize pyridylpiperazine-based compounds that potentiate antibiotic activity in E. coli through inhibition of its primary RND transporter, AcrAB-TolC. Characterisation of resistant E. coli mutants and structural biology analyses indicate that the compounds bind to a unique site on the transmembrane domain of the AcrB L protomer, lined by key catalytic residues involved in proton relay. Molecular dynamics simulations suggest that the inhibitors access this binding pocket from the cytoplasm via a channel exclusively present in the AcrB L protomer. Thus, our work unveils a class of allosteric efflux-pump inhibitors that likely act by preventing the functional catalytic cycle of the RND pump.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Lipoproteínas/química , Proteínas de Membrana Transportadoras/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Piperazinas/farmacologia , Piridinas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Antibacterianos/química , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico/efeitos dos fármacos , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Lipoproteínas/antagonistas & inibidores , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Oxacilina/química , Oxacilina/farmacologia , Piperazinas/síntese química , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Piridinas/síntese química , Relação Estrutura-Atividade
6.
Antibiotics (Basel) ; 10(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943706

RESUMO

Gram-negative Tripartite Resistance Nodulation and cell Division (RND) superfamily efflux pumps confer various functions, including multidrug and bile salt resistance, quorum-sensing, virulence and can influence the rate of mutations on the chromosome. Multidrug RND efflux systems are often characterized by a wide substrate specificity. Similarly to many other RND efflux pump systems, AcrAD-TolC confers resistance toward SDS, novobiocin and deoxycholate. In contrast to the other pumps, however, it in addition confers resistance against aminoglycosides and dianionic ß-lactams, such as sulbenicillin, aztreonam and carbenicillin. Here, we could show that AcrD from Salmonella typhimurium confers resistance toward several hitherto unreported AcrD substrates such as temocillin, dicloxacillin, cefazolin and fusidic acid. In order to address the molecular determinants of the S. typhimurium AcrD substrate specificity, we conducted substitution analyses in the putative access and deep binding pockets and in the TM1/TM2 groove region. The variants were tested in E. coli ΔacrBΔacrD against ß-lactams oxacillin, carbenicillin, aztreonam and temocillin. Deep binding pocket variants N136A, D276A and Y327A; access pocket variant R625A; and variants with substitutions in the groove region between TM1 and TM2 conferred a sensitive phenotype and might, therefore, be involved in anionic ß-lactam export. In contrast, lower susceptibilities were observed for E. coli cells harbouring deep binding pocket variants T139A, D176A, S180A, F609A, T611A and F627A and the TM1/TM2 groove variant I337A. This study provides the first insights of side chains involved in drug binding and transport for AcrD from S. typhimurium.

7.
Nat Commun ; 12(1): 6919, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824229

RESUMO

Upon antibiotic stress Gram-negative pathogens deploy resistance-nodulation-cell division-type tripartite efflux pumps. These include a H+/drug antiporter module that recognizes structurally diverse substances, including antibiotics. Here, we show the 3.5 Å structure of subunit AdeB from the Acinetobacter baumannii AdeABC efflux pump solved by single-particle cryo-electron microscopy. The AdeB trimer adopts mainly a resting state with all protomers in a conformation devoid of transport channels or antibiotic binding sites. However, 10% of the protomers adopt a state where three transport channels lead to the closed substrate (deep) binding pocket. A comparison between drug binding of AdeB and Escherichia coli AcrB is made via activity analysis of 20 AdeB variants, selected on basis of side chain interactions with antibiotics observed in the AcrB periplasmic domain X-ray co-structures with fusidic acid (2.3 Å), doxycycline (2.1 Å) and levofloxacin (2.7 Å). AdeABC, compared to AcrAB-TolC, confers higher resistance to E. coli towards polyaromatic compounds and lower resistance towards antibiotic compounds.


Assuntos
Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Antibacterianos , Anti-Infecciosos/farmacologia , Antiporters , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Preparações Farmacêuticas , Conformação Proteica
8.
Front Microbiol ; 12: 711158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349752

RESUMO

Acinetobacter baumannii is an important nosocomial pathogen that requires thoughtful consideration in the antibiotic prescription strategy due to its multidrug resistant phenotype. Tetracycline antibiotics have recently been re-administered as part of the combination antimicrobial regimens to treat infections caused by A. baumannii. We show that the TetA(G) efflux pump of A. baumannii AYE confers resistance to a variety of tetracyclines including the clinically important antibiotics doxycycline and minocycline, but not to tigecycline. Expression of tetA(G) gene is regulated by the TetR repressor of A. baumannii AYE (AbTetR). Thermal shift binding experiments revealed that AbTetR preferentially binds tetracyclines which carry a O-5H moiety in ring B, whereas tetracyclines with a 7-dimethylamino moiety in ring D are less well-recognized by AbTetR. Confoundingly, tigecycline binds to AbTetR even though it is not transported by TetA(G) efflux pump. Structural analysis of the minocycline-bound AbTetR-Gln116Ala variant suggested that the non-conserved Arg135 interacts with the ring D of minocycline by cation-π interaction, while the invariant Arg104 engages in H-bonding with the O-11H of minocycline. Interestingly, the Arg135Ala variant exhibited a binding preference for tetracyclines with an unmodified ring D. In contrast, the Arg104Ala variant preferred to bind tetracyclines which carry a O-6H moiety in ring C except for tigecycline. We propose that Arg104 and Arg135, which are embedded at the entrance of the AbTetR binding pocket, play important roles in the recognition of tetracyclines, and act as a barrier to prevent the release of tetracycline from its binding pocket upon AbTetR activation. The binding data and crystal structures obtained in this study might provide further insight for the development of new tetracycline antibiotics to evade the specific efflux resistance mechanism deployed by A. baumannii.

9.
Nat Commun ; 12(1): 3889, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188038

RESUMO

Gram-negative bacteria maintain an intrinsic resistance mechanism against entry of noxious compounds by utilizing highly efficient efflux pumps. The E. coli AcrAB-TolC drug efflux pump contains the inner membrane H+/drug antiporter AcrB comprising three functionally interdependent protomers, cycling consecutively through the loose (L), tight (T) and open (O) state during cooperative catalysis. Here, we present 13 X-ray structures of AcrB in intermediate states of the transport cycle. Structure-based mutational analysis combined with drug susceptibility assays indicate that drugs are guided through dedicated transport channels toward the drug binding pockets. A co-structure obtained in the combined presence of erythromycin, linezolid, oxacillin and fusidic acid shows binding of fusidic acid deeply inside the T protomer transmembrane domain. Thiol cross-link substrate protection assays indicate that this transmembrane domain-binding site can also accommodate oxacillin or novobiocin but not erythromycin or linezolid. AcrB-mediated drug transport is suggested to be allosterically modulated in presence of multiple drugs.


Assuntos
Antibacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sítio Alostérico , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Membrana Celular/metabolismo , Farmacorresistência Bacteriana Múltipla , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Conformação Proteica , Domínios Proteicos , Especificidade por Substrato
10.
Chem Rev ; 121(9): 5479-5596, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33909410

RESUMO

Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.


Assuntos
Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sistemas de Secreção Tipo I/metabolismo , Transportadores de Cassetes de Ligação de ATP , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/química , Proteínas de Membrana Transportadoras/química , Simulação de Dinâmica Molecular , Conformação Proteica , Relação Estrutura-Atividade , Sistemas de Secreção Tipo I/química
11.
Biochim Biophys Acta Biomembr ; 1863(1): 183488, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065135

RESUMO

Gram-negative bacteria export a large variety of antimicrobial compounds by forming two-membrane spanning tripartite multidrug efflux systems composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. Here we present the co-expression, purification and first electron microscopy insights of the Escherichia coli EmrAB-TolC tripartite Major Facilitator Superfamily (MSF) efflux system as a whole complex stabilized by Amphipol polymer. The structure reveals a 33 nm long complex delineated by the Amphipol belt at both extremities. Comparison of projection structures of EmrAB-TolC and AcrAB-TolC indicates that the outer membrane protein TolC linked to the periplasmic adaptor EmrA protein form an extended periplasmic canal. The overall length of EmrAB-TolC complex is similar to that of AcrAB-TolC with a probable tip-to-tip interaction between EmrA and TolC unveiling how the adaptor protein connects TolC and EmrB embedded in the inner membrane.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Complexos Multiproteicos/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína
12.
J Antimicrob Chemother ; 75(5): 1135-1139, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049277

RESUMO

OBJECTIVES: To investigate the role of Major Facilitator Superfamily (MFS)-type transporters from Acinetobacter baumannii AYE in tigecycline efflux. METHODS: Two putative tetracycline transporter genes of A. baumannii AYE (tetA and tetG) were heterologously expressed in Escherichia coli and drug susceptibility assays were conducted with tigecycline and three other tetracycline derivatives. The importance of TetA in tigecycline transport in A. baumannii was determined by complementation of tetA in WT and Resistance Nodulation cell Division (RND) gene knockout strains of A. baumannii ATCC 19606. Gene expression of the MFS-type tetA gene and RND efflux pump genes adeB, adeG and adeJ in A. baumannii AYE in the presence of tigecycline was analysed by quantitative real-time RT-PCR. RESULTS: Overproduction of TetA or TetG conferred resistance to doxycycline, minocycline and tetracycline in E. coli. Cells expressing tetA, but not those expressing tetG, conferred resistance to tigecycline, implying that TetA is a determinant for tigecycline transport. A. baumannii WT and RND-knockout strains complemented with plasmid-encoded tetA are significantly less susceptible to tigecycline compared with non-complemented strains. Efflux pump genes tetA and adeG are up-regulated in A. baumannii AYE in the presence of subinhibitory tigecycline concentrations. CONCLUSIONS: TetA plays an important role in tigecycline efflux of A. baumannii by removing the drug from cytoplasm to periplasm and, subsequently, the RND-type transporters AdeABC and AdeIJK extrude tigecycline across the outer membrane. When challenged with tigecycline, tetA is up-regulated in A. baumannii AYE. Synergy between TetA and the RND-type transporters AdeABC and/or AdeIJK appears necessary for A. baumannii to confer higher tigecycline resistance via drug efflux.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Divisão Celular , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Tigeciclina
13.
Bio Protoc ; 10(24): e3865, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659506

RESUMO

Bdellovibrio bacteriovorus, an obligate predatory bacterium [i.e., bacteria that kill and feed on other bacteria (prey)], has the potential to be used as a probiotic for the disinfection of surfaces or for the treatment of bacterial infections. One option is to use this organism in combination with antimicrobials to potentiate the effectiveness of treatments. In order to make this approach feasible more has to be known about the ability of B. bacteriovorus to resist antibiotics itself. Standard assays to determine the minimum inhibitory concentration (MIC) are not suitable for B. bacteriovorus, since the small size of this bacterium (0.25-0.35 by 0.5-2 µm) prevents scattering at OD600. Since these predatory bacteria require larger prey bacteria for growth (e.g., E. coli dimensions are 1 by 1-2 µm), the basis for the antimicrobial sensitivity assay described here is the reduction of the OD600 caused by prey lysis during growth. Previous studies on predatory bacteria resistance to antimicrobials employed methods that did not allow a direct comparison of antimicrobial resistance levels to those of other bacterial species. Here, we describe a procedure to determine B. bacteriovorus sensitivity to antimicrobials which can be compared to a reference organism tested as close as possible to the same experimental conditions. Briefly, minimal inhibitory concentration (MIC) values of B. bacteriovorus are determined by measuring the reduction in absorbance at 600 nm of mixed predator/prey cultures in presence and absence of different antimicrobial concentrations. Of note, this method can be modified to obtain antimicrobial MIC values of other predatory bacteria, using different conditions, prey bacteria and/or antimicrobials.

14.
Ann N Y Acad Sci ; 1459(1): 38-68, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588569

RESUMO

Gram-negative bacteria are intrinsically resistant against cytotoxic substances by means of their outer membrane and a network of multidrug efflux systems, acting in synergy. Efflux pumps from various superfamilies with broad substrate preferences sequester and pump drugs across the inner membrane to supply the highly polyspecific and powerful tripartite resistance-nodulation-cell division (RND) efflux pumps with compounds to be extruded across the outer membrane barrier. In Escherichia coli, the tripartite efflux system AcrAB-TolC is the archetype RND multiple drug efflux pump complex. The homotrimeric inner membrane component acriflavine resistance B (AcrB) is the drug specificity and energy transduction center for the drug/proton antiport process. Drugs are bound and expelled via a cycle of mainly three consecutive states in every protomer, constituting a flexible alternating access channel system. This review recapitulates the molecular basis of drug and inhibitor binding, including mechanistic insights into drug efflux by AcrB. It also summarizes 17 years of mutational analysis of the gene acrB, reporting the effect of every substitution on the ability of E. coli to confer resistance toward antibiotics (http://goethe.link/AcrBsubstitutions). We emphasize the functional robustness of AcrB toward single-site substitutions and highlight regions that are more sensitive to perturbation.


Assuntos
Antibacterianos/metabolismo , Farmacorresistência Bacteriana Múltipla/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
15.
J Mol Biol ; 432(4): 861-877, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31881208

RESUMO

AcrAB(Z)-TolC is the main drug efflux transporter complex in Escherichia coli. The extrusion of various toxic compounds depends on several drug binding sites within the trimeric AcrB transporter. Membrane-localized carboxylated substrates, such as fusidic acid and hydrophobic ß-lactams, access the pump via a groove between the transmembrane helices TM1 and TM2. In this article, the transport route from the initial TM1/TM2 groove binding site toward the deep binding pocket located in the periplasmic part has been addressed via molecular modeling studies followed by functional and structural characterization of several AcrB variants. We propose that membrane-embedded drugs bind initially to the TM1/TM2 groove, are oriented by the AcrB PN2 subdomain, and are subsequently transported via a PN2/PC1 interface pathway directly toward the deep binding pocket. Our work emphasizes the exploitation of multiple transport pathways by AcrB tuned to substrate physicochemical properties related to the polyspecificity of the pump.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sítios de Ligação , Cromatografia em Gel , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Modelos Teóricos , Simulação de Dinâmica Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Conformação Proteica
16.
J Antimicrob Chemother ; 74(6): 1494-1502, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844059

RESUMO

OBJECTIVES: The aim of this study was to characterize the Acinetobacter calcoaceticus clinical isolate AC_2117 with the novel carbapenem-hydrolysing class D ß-lactamase (CHDL) OXA-679. METHODS: Identification of the species and ß-lactamases was verified by genome sequencing (PacBio) and phylogenetic analyses. Antibiotic susceptibility of AC_2117 and transformants harbouring cloned blaOXA-679 was evaluated using antibiotic gradient strips and microbroth dilution. OXA-679 was purified heterologously and kinetic parameters were determined using spectrometry or isothermal titration calorimetry. The impact of OXA-679 production during imipenem therapy was evaluated in the Galleria mellonella infection model. RESULTS: Sequencing of the complete genome of the clinical A. calcoaceticus isolate AC_2117 identified a novel CHDL, termed OXA-679. This enzyme shared sequence similarity of 71% to each of the families OXA-143 and OXA-24/40. Phylogenetic analyses revealed that OXA-679 represents a member of a new OXA family. Cloning and expression of blaOXA-679 as well as measurement of kinetic parameters revealed the effective hydrolysis of carbapenems which resulted in reduced susceptibility to carbapenems in Escherichia coli and A. calcoaceticus, and high-level carbapenem resistance in Acinetobacter baumannii. Infection of larvae of G. mellonella with a sublethal dose of blaOXA-679-expressing A. baumannii could not be cured by high-dose imipenem therapy, indicating carbapenem resistance in vivo. CONCLUSIONS: We identified blaOXA-679 in a clinical A. calcoaceticus isolate that represents a member of the new OXA-679 family and that conferred high-level carbapenem resistance in vitro and in vivo.


Assuntos
Acinetobacter calcoaceticus/efeitos dos fármacos , Acinetobacter calcoaceticus/enzimologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana/genética , beta-Lactamases/metabolismo , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Acinetobacter calcoaceticus/genética , Sequência de Aminoácidos , Animais , Humanos , Larva/microbiologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mariposas/microbiologia , Conformação Proteica , Sequenciamento Completo do Genoma
17.
J Antimicrob Chemother ; 74(5): 1192-1201, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30783664

RESUMO

OBJECTIVES: To identify major facilitator superfamily (MFS)-type chloramphenicol transporters of Acinetobacter baumannii AYE, to characterize its substrate specificity and identify CraA substrate and H+ binding sites. METHODS: Five ORFs predicted to encode chloramphenicol transporters were heterologously expressed in Escherichia coli and their substrate specificity was determined by drug susceptibility assays on solid agar medium. CraA transport properties were determined via whole cell fluorescence experiments using ethidium and dequalinium. ACMA quenching was used to characterize the H+/drug antiport process in everted membrane vesicles. The function of CraA in A. baumannii was determined by drug susceptibility assay using A. baumannii ATCC 19606 ΔcraA. RESULTS: CraA, ABAYE0913 and CmlA5 are functionally active when overproduced in E. coli. ABAYE0913 conferred resistance to florfenicol and benzalkonium, CmlA5 conferred resistance to chloramphenicol and thiamphenicol, and craA expression resulted in resistance to chloramphenicol, thiamphenicol, florfenicol, ethidium, dequalinium, chlorhexidine, benzalkonium, mitomycin C and TPP+. Cell expressing craA_E38A showed no resistance to all tested drugs, implying that Glu-38 is involved in the binding of drugs and/or protons. Functional assays indicated that substitution of Asp-46 to Ala resulted in severe susceptibility to cationic drugs, chloramphenicol and thiamphenicol. In contrast, Glu-338 is important for the recognition of chloramphenicol, florfenicol, chlorhexidine and dequalinium. CONCLUSIONS: This study suggests that CraA has a broad substrate specificity, similar to that of E. coli MdfA. However, due to the presence of three charged residues in the transmembrane region conferring different susceptibility profiles upon substitution to Ala, we postulate that CraA has a different substrate recognition mode compared with MdfA.


Assuntos
Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Antiporters/genética , Antiporters/metabolismo , Cloranfenicol/metabolismo , Hidrogênio/metabolismo , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Sequência de Aminoácidos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antiporters/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Clonagem Molecular , Farmacorresistência Bacteriana , Modelos Moleculares , Conformação Proteica , Análise de Sequência de DNA , Especificidade por Substrato
18.
Biochim Biophys Acta Biomembr ; 1861(1): 62-74, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30416087

RESUMO

Understanding the molecular determinants for recognition, binding and transport of antibiotics by multidrug efflux systems is important for basic research and useful for the design of more effective antimicrobial compounds. Imipenem and meropenem are two carbapenems whose antibacterial activity is known to be poorly and strongly affected by MexAB-OprM, the major efflux pump transporter in Pseudomonas aeruginosa. However, not much is known regarding recognition and transport of these compounds by AcrAB-TolC, which is the MexAB-OprM homologue in Escherichia coli and by definition the paradigm model for structural studies on efflux pumps. Prompted by this motivation, we unveiled the molecular details of the interaction of imipenem and meropenem with the transporter AcrB by combining computer simulations with biophysical experiments. Regarding the interaction with the two main substrate binding regions of AcrB, the so-called access and deep binding pockets, molecular dynamics simulations revealed imipenem to be more mobile than meropenem in the former, while comparable mobilities were observed in the latter. This result is in line with isothermal titration calorimetry, differential scanning experiments, and binding free energy calculations, indicating a higher affinity for meropenem than imipenem at the deep binding pocket, while both sharing similar affinities at the access pocket. Our findings rationalize how different physico-chemical properties of compounds reflect on their interactions with AcrB. As such, they constitute precious information to be exploited for the rational design of antibiotics able to evade efflux pumps.


Assuntos
Carbapenêmicos/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Sítios de Ligação , Transporte Biológico , Varredura Diferencial de Calorimetria , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Termodinâmica
19.
Nat Rev Microbiol ; 16(9): 577, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30022105

RESUMO

In the version of this Review originally published, the author contributions of co-author Arthur Neuberger were incorrectly listed. The author contributions should have appeared as 'D.D., X.W.-K., A.N., H.W.v.V., K.M.P., L.J.V.P. and B.F.L. researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and edited the manuscript before submission'. This has now been corrected in all versions of the Review. The authors apologize to readers for this error.

20.
Nat Rev Microbiol ; 16(9): 523-539, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002505

RESUMO

Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Resistência a Múltiplos Medicamentos , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA