Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21283, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042902

RESUMO

Spatially-structured laser beams, eventually carrying orbital angular momentum, affect electronic transitions of atoms and their motional states in a complex way. We present a general framework, based on the spherical tensor decomposition of the interaction Hamiltonian, for computing atomic transition matrix elements for light fields of arbitrary spatial mode and polarization structures. We study both the bare electronic matrix elements, corresponding to transitions with no coupling to the atomic center-of-mass motion, as well as the matrix elements describing the coupling to the quantized atomic motion in the resolved side-band regime. We calculate the spatial dependence of electronic and motional matrix elements for tightly focused Hermite-Gaussian, Laguerre-Gaussian and for radially and azimuthally polarized beams. We show that near the diffraction limit, all these beams exhibit longitudinal fields and field gradients, which strongly affect the selection rules and could be used to tailor the light-matter interaction. The presented framework is useful for describing trapped atoms or ions in spatially-structured light fields and therefore for designing new protocols and setups in quantum optics, -sensing and -information processing. We provide open code to reproduce our results or to evaluate interaction matrix elements for different transition types, beam structures and interaction geometries.

2.
Nat Commun ; 7: 12998, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694805

RESUMO

Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems.

3.
Phys Rev Lett ; 117(4): 043001, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27494469

RESUMO

We realize a single particle microscope by using deterministically extracted laser-cooled ^{40}Ca^{+} ions from a Paul trap as probe particles for transmission imaging. We demonstrate focusing of the ions to a spot size of 5.8±1.0 nm and a minimum two-sample deviation of the beam position of 1.5 nm in the focal plane. The deterministic source, even when used in combination with an imperfect detector, gives rise to a fivefold increase in the signal-to-noise ratio as compared with conventional Poissonian sources. Gating of the detector signal by the extraction event suppresses dark counts by 6 orders of magnitude. We implement a Bayes experimental design approach to microscopy in order to maximize the gain in spatial information. We demonstrate this method by determining the position of a 1 µm circular hole structure to a precision of 2.7 nm using only 579 probe particles.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25215667

RESUMO

Very recently, interferometric methods have been proposed to measure the full statistics of work performed on a driven quantum system [Dorner et al., Phys. Rev. Lett. 110, 230601 (2013) and Mazzola et al., Phys. Rev. Lett. 110, 230602 (2013)]. The advantage of such schemes is that they replace the necessity to make projective measurements by performing phase estimation on an appropriately coupled ancilla qubit. These proposals are one possible route to the tangible experimental exploration of quantum thermodynamics, a subject which is the center of much current attention due to the current control of mesoscopic quantum systems. In this Rapid Communication we demonstrate that a modification of the phase estimation protocols can be used in order to measure the heat distribution of a quantum process. In addition, we demonstrate how our scheme maybe implemented using ion trap technology. Our scheme should pave the way for experimental explorations of the Landauer principle and hence the intricate energy to information conversion in mesoscopic quantum systems.


Assuntos
Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA