Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(9): 102278, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863435

RESUMO

Immediate early genes (IEGs) are transcribed in response to neuronal activity from sensory stimulation during multiple adaptive processes in the brain. The transcriptional profile of IEGs is indicative of the duration of neuronal activity, but its sensitivity to the strength of depolarization remains unknown. Also unknown is whether activity history of graded potential changes influence future neuronal activity. In this work with dissociated rat cortical neurons, we found that mild depolarization-mediated by elevated extracellular potassium (K+)-induces a wide array of rapid IEGs and transiently depresses transcriptional and signaling responses to a successive stimulus. This latter effect was independent of de novo transcription, translation, and signaling via calcineurin or mitogen-activated protein kinase. Furthermore, as measured by multiple electrode arrays and calcium imaging, mild depolarization acutely subdues subsequent spontaneous and bicuculline-evoked activity via calcium- and N-methyl-d-aspartate receptor-dependent mechanisms. Collectively, this work suggests that a recent history of graded potential changes acutely depress neuronal intrinsic properties and subsequent responses. Such effects may have several potential downstream implications, including reducing signal-to-noise ratio during synaptic plasticity processes.


Assuntos
Potenciais de Ação , Calcineurina , Genes Precoces , Neurônios , Transcrição Gênica , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bicuculina/farmacologia , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/metabolismo , Antagonistas de Receptores de GABA-A/farmacologia , Genes Precoces/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Potássio/metabolismo , Potássio/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
2.
ASN Neuro ; 12: 1759091420974807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33256465

RESUMO

Elevated extracellular potassium chloride is widely used to achieve membrane depolarization of cultured neurons. This technique has illuminated mechanisms of calcium influx through L-type voltage sensitive calcium channels, activity-regulated signaling, downstream transcriptional events, and many other intracellular responses to depolarization. However, there is enormous variability in these treatments, including durations from seconds to days and concentrations from 3mM to 150 mM KCl. Differential effects of these variable protocols on neuronal activity and transcriptional programs are underexplored. Furthermore, potassium chloride treatments in vitro are criticized for being poor representatives of in vivo phenomena and are questioned for their effects on cell viability. In this review, we discuss the intracellular consequences of elevated extracellular potassium chloride treatment in vitro, the variability of such treatments in the literature, the strengths and limitations of this tool, and relevance of these studies to brain functions and dysfunctions.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Fármacos Neuromusculares Despolarizantes/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Cloreto de Potássio/farmacologia , Animais , Canais de Cálcio Tipo L/fisiologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia
3.
J Biol Chem ; 295(18): 6120-6137, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32229587

RESUMO

The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH-BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH-BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK-ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand-protein docking suggested that 6-OH-BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH-BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH-BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body ß-lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK-ERK signaling, and axonal guidance.


Assuntos
Éteres/química , Éteres/farmacologia , Halogenação , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/citologia , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Drosophila melanogaster , Hidroxilação , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-31362383

RESUMO

Disruption of epigenetic regulation by environmental toxins is an emerging area of focus for understanding the latter's impact on human health. Polybrominated diphenyl ethers (PBDEs), one such group of toxins, are an environmentally pervasive class of brominated flame retardants that have been extensively used as coatings on a wide range of consumer products. Their environmental stability, propensity for bioaccumulation, and known links to adverse health effects have evoked extensive research to characterize underlying biological mechanisms of toxicity. Of particular concern is the growing body of evidence correlating human exposure levels to behavioral deficits related to neurodevelopmental disorders. The developing nervous system is particularly sensitive to influence by environmental signals, including dysregulation by toxins. Several major modes of actions have been identified, but a clear understanding of how observed effects relate to negative impacts on human health has not been established. Here, we review the current body of evidence for PBDE-induced epigenetic disruptions, including DNA methylation, chromatin dynamics, and non-coding RNA expression while discussing the potential relationship between PBDEs and neurodevelopmental disorders.


Assuntos
Poluentes Ambientais/toxicidade , Epigênese Genética/efeitos dos fármacos , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Metilação de DNA , Humanos
5.
Environ Epigenet ; 4(1): dvx020, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29765770

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a pervasive class of brominated flame retardants that are present in the environment at particularly high levels, especially in the United States. Their environmental stability, propensity for bioaccumulation, and known potential for neurotoxicity has evoked interest regarding their effects on the developing nervous system. Exposure to PBDEs has been strongly associated with neurodevelopmental disorders. However, the details of their mechanistic roles in such disorders are incompletely understood. Here, we report the effects of one of the most prevalent congeners, BDE-47, and its hydroxylated metabolites on the maturation and function of embryonic rat cortical neurons. Prolonged exposure to 6OH-BDE-47 produces the strongest effects amongst the parent BDE-47 congener and its tested hydroxylated metabolites. These effects include: i) disruption of transcriptional responses to neuronal activity, ii) dysregulation of multiple genes associated with neurodevelopmental disorders, and intriguingly, iii) altered expression of several subunits of the developmentally-relevant BAF (Brg1-associated factors) chromatin remodeling complex, including the key subunit BAF170. Taken together, our data indicate that persistent exposure to 6OH-BDE-47 may interfere with neurodevelopmental chromatin remodeling mechanisms and gene transcription programs, which in turn are likely to interfere with downstream processes such as synapse development and overall functional maturity of neurons. Results from this study have identified a novel aspect of 6OH-BDE-47 toxicity and open new avenues to explore the effects of a ubiquitous environmental toxin on epigenetic regulation of neuronal maturation and function.

6.
Neuron ; 98(3): 530-546.e11, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29681534

RESUMO

A vast number of different neuronal activity patterns could each induce a different set of activity-regulated genes. Mapping this coupling between activity pattern and gene induction would allow inference of a neuron's activity-pattern history from its gene expression and improve our understanding of activity-pattern-dependent synaptic plasticity. In genome-scale experiments comparing brief and sustained activity patterns, we reveal that activity-duration history can be inferred from gene expression profiles. Brief activity selectively induces a small subset of the activity-regulated gene program that corresponds to the first of three temporal waves of genes induced by sustained activity. Induction of these first-wave genes is mechanistically distinct from that of the later waves because it requires MAPK/ERK signaling but does not require de novo translation. Thus, the same mechanisms that establish the multi-wave temporal structure of gene induction also enable different gene sets to be induced by different activity durations.


Assuntos
Córtex Cerebral/fisiologia , Regulação da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Estimulação Luminosa/métodos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA