Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 72018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30387712

RESUMO

A subset of atypical memory B cells accumulates in malaria and several infections, autoimmune disorders and aging in both humans and mice. It has been suggested these cells are exhausted long-lived memory B cells, and their accumulation may contribute to poor acquisition of long-lasting immunity to certain chronic infections, such as malaria and HIV. Here, we generated an immunoglobulin heavy chain knock-in mouse with a BCR that recognizes MSP1 of the rodent malaria parasite, Plasmodium chabaudi. In combination with a mosquito-initiated P. chabaudi infection, we show that Plasmodium-specific atypical memory B cells are short-lived and disappear upon natural resolution of chronic infection. These cells show features of activation, proliferation, DNA replication, and plasmablasts. Our data demonstrate that Plasmodium-specific atypical memory B cells are not a subset of long-lived memory B cells, but rather short-lived activated cells, and part of a physiologic ongoing B-cell response.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Memória Imunológica , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium chabaudi/imunologia , Animais , Subpopulações de Linfócitos B/química , Linfócitos B/química , Citometria de Fluxo , Técnicas de Introdução de Genes , Imunoglobulina G/genética , Malária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doenças dos Roedores/imunologia
2.
Immunity ; 48(6): 1220-1232.e5, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29802020

RESUMO

Despite the importance of Th17 cells in autoimmune diseases, it remains unclear how they control other inflammatory cells in autoimmune tissue damage. Using a model of spontaneous autoimmune arthritis, we showed that arthritogenic Th17 cells stimulated fibroblast-like synoviocytes via interleukin-17 (IL-17) to secrete the cytokine GM-CSF and also expanded synovial-resident innate lymphoid cells (ILCs) in inflamed joints. Activated synovial ILCs, which expressed CD25, IL-33Ra, and TLR9, produced abundant GM-CSF upon stimulation by IL-2, IL-33, or CpG DNA. Loss of GM-CSF production by either ILCs or radio-resistant stromal cells prevented Th17 cell-mediated arthritis. GM-CSF production by Th17 cells augmented chronic inflammation but was dispensable for the initiation of arthritis. We showed that GM-CSF-producing ILCs were present in inflamed joints of rheumatoid arthritis patients. Thus, a cellular cascade of autoimmune Th17 cells, ILCs, and stromal cells, via IL-17 and GM-CSF, mediates chronic joint inflammation and can be a target for therapeutic intervention.


Assuntos
Artrite Reumatoide/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Linfócitos/imunologia , Células Estromais/imunologia , Células Th17/imunologia , Animais , Artrite Reumatoide/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Humanos , Linfócitos/metabolismo , Camundongos , Células Estromais/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Células Th17/metabolismo
3.
Nature ; 542(7640): 242-245, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28146477

RESUMO

The aryl hydrocarbon receptor (AHR) recognizes xenobiotics as well as natural compounds such as tryptophan metabolites, dietary components and microbiota-derived factors, and it is important for maintenance of homeostasis at mucosal surfaces. AHR activation induces cytochrome P4501 (CYP1) enzymes, which oxygenate AHR ligands, leading to their metabolic clearance and detoxification. Thus, CYP1 enzymes have an important feedback role that curtails the duration of AHR signalling, but it remains unclear whether they also regulate AHR ligand availability in vivo. Here we show that dysregulated expression of Cyp1a1 in mice depletes the reservoir of natural AHR ligands, generating a quasi AHR-deficient state. Constitutive expression of Cyp1a1 throughout the body or restricted specifically to intestinal epithelial cells resulted in loss of AHR-dependent type 3 innate lymphoid cells and T helper 17 cells and increased susceptibility to enteric infection. The deleterious effects of excessive AHR ligand degradation on intestinal immune functions could be counter-balanced by increasing the intake of AHR ligands in the diet. Thus, our data indicate that intestinal epithelial cells serve as gatekeepers for the supply of AHR ligands to the host and emphasize the importance of feedback control in modulating AHR pathway activation.


Assuntos
Retroalimentação Fisiológica , Intestinos/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Animais , Citrobacter rodentium/imunologia , Colo/citologia , Colo/imunologia , Colo/metabolismo , Colo/microbiologia , Citocromo P-450 CYP1A1/metabolismo , Feminino , Imunidade Inata , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/microbiologia , Ligantes , Masculino , Camundongos , Células Th17/imunologia
4.
PLoS Pathog ; 11(7): e1004994, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26147567

RESUMO

Parasitic helminths establish chronic infections in mammalian hosts. Helminth/Plasmodium co-infections occur frequently in endemic areas. However, it is unclear whether Plasmodium infections compromise anti-helminth immunity, contributing to the chronicity of infection. Immunity to Plasmodium or helminths requires divergent CD4+ T cell-driven responses, dominated by IFNγ or IL-4, respectively. Recent literature has indicated that Th cells, including Th2 cells, have phenotypic plasticity with the ability to produce non-lineage associated cytokines. Whether such plasticity occurs during co-infection is unclear. In this study, we observed reduced anti-helminth Th2 cell responses and compromised anti-helminth immunity during Heligmosomoides polygyrus and Plasmodium chabaudi co-infection. Using newly established triple cytokine reporter mice (Il4gfpIfngyfpIl17aFP635), we demonstrated that Il4gfp+ Th2 cells purified from in vitro cultures or isolated ex vivo from helminth-infected mice up-regulated IFNγ following adoptive transfer into Rag1-/- mice infected with P. chabaudi. Functionally, Th2 cells that up-regulated IFNγ were transcriptionally re-wired and protected recipient mice from high parasitemia. Mechanistically, TCR stimulation and responsiveness to IL-12 and IFNγ, but not type I IFN, was required for optimal IFNγ production by Th2 cells. Finally, blockade of IL-12 and IFNγ during co-infection partially preserved anti-helminth Th2 responses. In summary, this study demonstrates that Th2 cells retain substantial plasticity with the ability to produce IFNγ during Plasmodium infection. Consequently, co-infection with Plasmodium spp. may contribute to the chronicity of helminth infection by reducing anti-helminth Th2 cells and converting them into IFNγ-secreting cells.


Assuntos
Coinfecção/imunologia , Interferon gama/metabolismo , Interleucina-12/imunologia , Malária/imunologia , Infecções por Strongylida/imunologia , Células Th2/imunologia , Transferência Adotiva , Animais , Separação Celular , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Nematospiroides dubius/imunologia , Plasmodium chabaudi/imunologia , Reação em Cadeia da Polimerase
5.
Development ; 142(1): 70-81, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25516969

RESUMO

Balancing stem cell self-renewal and initiation of lineage specification programs is essential for the development and homeostasis of the hematopoietic system. We have specifically ablated geminin in the developing murine hematopoietic system and observed profound defects in the generation of mature blood cells, leading to embryonic lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal liver following geminin ablation, while committed progenitors were reduced. Genome-wide transcriptome analysis identified key HSC transcription factors as being upregulated upon geminin deletion, revealing a gene network linked with geminin that controls fetal hematopoiesis. In order to obtain mechanistic insight into the ability of geminin to regulate transcription, we examined Hoxa9 as an example of a key gene in definitive hematopoiesis. We demonstrate that in human K562 cells geminin is associated with HOXA9 regulatory elements and its absence increases HOXA9 transcription similarly to that observed in vivo. Moreover, silencing geminin reduced recruitment of the PRC2 component SUZ12 to the HOXA9 locus and resulted in an increase in RNA polymerase II recruitment and H3K4 trimethylation (H3K4me3), whereas the repressive marks H3K9me3 and H3K27me3 were reduced. The chromatin landscape was also modified at the regulatory regions of HOXA10 and GATA1. K562 cells showed a reduced ability to differentiate to erythrocytes and megakaryocytes upon geminin silencing. Our data suggest that geminin is indispensable for fetal hematopoiesis and regulates the generation of a physiological pool of stem and progenitor cells in the fetal hematopoietic system.


Assuntos
Feto/citologia , Geminina/deficiência , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Fatores de Transcrição/genética , Animais , Contagem de Células , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Epigênese Genética , Geminina/metabolismo , Ontologia Genética , Loci Gênicos , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células K562 , Fígado/citologia , Fígado/embriologia , Camundongos , Proteínas de Neoplasias , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
6.
J Immunol ; 193(9): 4602-13, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25261485

RESUMO

IL-22 is a cytokine that regulates tissue homeostasis at barrier surfaces. A variety of IL-22-producing cell types is known, but identification on the single-cell level remains difficult. Therefore, we generated a fate reporter mouse that would allow the identification of IL-22-producing cells and their fate mapping in vivo. To trace IL-22-expressing cells, a sequence encoding Cre recombinase was cloned into the Il22 locus, and IL22(Cre) mice were crossed with reporter mice expressing enhanced yellow fluorescence protein (eYFP) under control of the endogenous Rosa26 promoter. In IL22(Cre)R26R(eYFP) mice, the fluorescent reporter permanently labels cells that have switched on Il22 expression, irrespective of cytokine production. Despite a degree of underreporting, eYFP expression was detectable in nonimmune mice and restricted to group 3 innate lymphoid cells (ILC3) in the gut and γδ T cells in skin or lung. Upon skin challenge with imiquimod, eYFP(+) γδ and CD4 T cells expanded in the skin. Infection with Citrobacter rodentium initially was controlled by ILC3, followed by expansion of eYFP(+) CD4 T cells, which were induced in innate lymphoid follicles in the colon. No eYFP expression was detected in small intestinal Th17 cells, and they did not expand in the immune response. Colonic eYFP(+) CD4 T cells exhibited plasticity during infection with expression of additional cytokines, in contrast to ILC3, which remained largely stable. Single-cell quantitative PCR analysis of eYFP(+) CD4 T cells confirmed their heterogeneity, suggesting that IL-22 expression is not confined to particular subsets or a dedicated Th22 subset.


Assuntos
Homeostase , Infecções/metabolismo , Interleucinas/biossíntese , Animais , Citrobacter rodentium/imunologia , Análise por Conglomerados , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Ordem dos Genes , Marcação de Genes , Genes Reporter , Loci Gênicos , Homozigoto , Infecções/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Interleucinas/genética , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Interleucina 22
7.
Nature ; 514(7520): 98-101, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25079320

RESUMO

Haematopoiesis is a developmental cascade that generates all blood cell lineages in health and disease. This process relies on quiescent haematopoietic stem cells capable of differentiating, self renewing and expanding upon physiological demand. However, the mechanisms that regulate haematopoietic stem cell homeostasis and function remain largely unknown. Here we show that the neurotrophic factor receptor RET (rearranged during transfection) drives haematopoietic stem cell survival, expansion and function. We find that haematopoietic stem cells express RET and that its neurotrophic factor partners are produced in the haematopoietic stem cell environment. Ablation of Ret leads to impaired survival and reduced numbers of haematopoietic stem cells with normal differentiation potential, but loss of cell-autonomous stress response and reconstitution potential. Strikingly, RET signals provide haematopoietic stem cells with critical Bcl2 and Bcl2l1 surviving cues, downstream of p38 mitogen-activated protein (MAP) kinase and cyclic-AMP-response element binding protein (CREB) activation. Accordingly, enforced expression of RET downstream targets, Bcl2 or Bcl2l1, is sufficient to restore the activity of Ret null progenitors in vivo. Activation of RET results in improved haematopoietic stem cell survival, expansion and in vivo transplantation efficiency. Remarkably, human cord-blood progenitor expansion and transplantation is also improved by neurotrophic factors, opening the way for exploration of RET agonists in human haematopoietic stem cell transplantation. Our work shows that neurotrophic factors are novel components of the haematopoietic stem cell microenvironment, revealing that haematopoietic stem cells and neurons are regulated by similar signals.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Sobrevivência Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática , Feminino , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-ret/deficiência , Proteínas Proto-Oncogênicas c-ret/genética , Transdução de Sinais , Nicho de Células-Tronco , Proteína bcl-X/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
PLoS Pathog ; 9(6): e1003406, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762028

RESUMO

Resolution of a variety of acute bacterial and parasitic infections critically relies on the stimulation of myelopoiesis leading in cases to extramedullary hematopoiesis. Here, we report the isolation of the earliest myeloid-restricted progenitors in acute infection with the rodent malaria parasite, Plasmodium chabaudi. The rapid disappearance of these infection-induced myeloid progenitors from the bone marrow (BM) equated with contraction of the functional myeloid potential in that organ. The loss of BM myelopoiesis was not affected by the complete genetic inactivation of toll-like receptor signaling. De-activation of IFN-γ signaling completely abrogated the contraction of BM myeloid progenitors. Radiation chimeras of Ifngr1-null and control BM revealed that IFN-γ signaling in an irradiation-resistant stromal compartment was crucial for the loss of early myeloid progenitors. Systemic IFN-γ triggered the secretion of C-C motif ligand chemokines CCL2 and CCL7 leading to the egress of early, myeloid-committed progenitors from the bone marrow mediated by their common receptor CCR2. The mobilization of myeloid progenitors initiated extramedullary myelopoiesis in the spleen in a CCR2-dependent manner resulting in augmented myelopoiesis during acute malaria. Consistent with the lack of splenic myelopoiesis in the absence of CCR2 we observed a significant persistence of parasitemia in malaria infected CCR2-deficient hosts. Our findings reveal how the activated immune system mobilizes early myeloid progenitors out of the BM thereby transiently establishing myelopoiesis in the spleen in order to contain and resolve the infection locally.


Assuntos
Quimiocina CCL2/imunologia , Quimiocina CCL7/imunologia , Hematopoese Extramedular/imunologia , Interferon gama/imunologia , Malária/imunologia , Células Progenitoras Mieloides/imunologia , Mielopoese/imunologia , Plasmodium chabaudi/imunologia , Animais , Quimiocina CCL2/genética , Quimiocina CCL7/genética , Interferon gama/genética , Malária/genética , Camundongos , Camundongos Knockout , Receptores CCR2/genética , Receptores CCR2/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Baço/imunologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
9.
Proc Natl Acad Sci U S A ; 109(43): 17549-54, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23047700

RESUMO

IL-17-producing CD27(-) γδ cells (γδ(27-) cells) are widely viewed as innate immune cells that make critical contributions to host protection and autoimmunity. However, factors that promote them over IFN-γ-producing γδ(27+) cells are poorly elucidated. Moreover, although human IL-17-producing γδ cells are commonly implicated in inflammation, such cells themselves have proved difficult to isolate and characterize. Here, murine γδ(27-) T cells and thymocytes are shown to be rapidly and substantially expanded by IL-7 in vitro and in vivo. This selectivity owes in substantial part to the capacity of IL-7 to activate STAT3 in such cells. Additionally, IL-7 promotes strong responses of IL-17-producing γδ cells to TCR agonists, thus reemphasizing the cells' adaptive and innate potentials. Moreover, human IL-17-producing γδ cells are also substantially expanded by IL-7 plus TCR agonists. Hence, IL-7 has a conserved potential to preferentially regulate IL-17-producing γδ cells, with both biological and clinical implications.


Assuntos
Interleucina-17/biossíntese , Interleucina-7/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos
10.
Immunogenetics ; 64(8): 591-604, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22581009

RESUMO

T cell development constitutes a multistage process allowing the dissection of events resulting in cellular commitment and functional specification in a specialized microenvironment. This process is guided by the appropriate expression of regulatory genetic factors like transcriptional activators or repressors which are, in part, dependent on instructive signals of the microenvironment. To date, it remains unclear whether exactly the same genetic mechanism acts in adult compared to fetal T cell development. In order to directly compare T cell commitment during adult and fetal differentiation, we isolated subsequent stages of intrathymic subpopulations starting with early canonical T cell progenitors up to irreversibly committed T cell precursors. The genome-wide analysis revealed several distinct gene clusters with a specific pattern of gene regulation for each subset. The largest cluster contained genes upregulated after transition through the most primitive pool into the next transitory population with a consistently elevated expression of elements associated with ongoing T cell fate specification, like Gata3 and Tcf7, in fetal progenitors. Furthermore, adult and fetal T cell progenitors occupied distinct "transcriptional territories" revealing a precise land map of the progression to final T cell commitment operating in different developmental windows. The presence and/or elevated expression of elements associated with an ongoing establishment of a T cell signature in the most primitive fetal subset is highly suggestive for an extrathymic initiation of T cell specification and underlines the fundamental differences in fetal versus adult lymphopoiesis.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Feto , Perfilação da Expressão Gênica , Linfócitos T/fisiologia , Timócitos/fisiologia , Animais , Feminino , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/fisiologia , Linfopoese , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries
11.
Immunology ; 134(3): 349-59, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21978004

RESUMO

Bone morphogenetic protein (BMP) signalling regulates lymphopoiesis in bone marrow and thymus via the interaction of haemato-lymphoid progenitors with the stroma microenvironment. Despite increasing functional evidence for the role of BMP signalling in lymphopoiesis, little is known of the spatial distribution of BMP/BMP antagonists in the thymus and of how BMP signals exert specific functions in developing lymphocytes. We analysed expression of BMP/BMP antagonists in the thymus and bone marrow and determined the topology of BMP/BMP antagonist expression using lacZ reporter mice. Bmp4, Bmp7, Gremlin and Twisted gastrulation (Twsg1) are all expressed in the thymus and expression was clearly different for each gene investigated. Expression was seen both in cortical and medullary regions suggesting that BMP signals regulate all stages of T-cell development. Two genes in particular, Bmp7 and Twsg1, were dynamically expressed in developing T and B lymphocytes. Their conditional ablation in all haematopoietic cells surprisingly did not affect the steady state of B-cell and T-cell development. This indicates that both lymphoid cell-derived BMP7 and TWSG1 are dispensable for normal lymphopoiesis and that bone-marrow stroma-derived TWSG1 is responsible for the lymphoid defects observed in Twsg1 null mice. In summary our data demonstrate a complex network of lymphoid and stroma derived BMP signals involved in the orchestration of lymphopoiesis in both bone marrow and thymus.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linfócitos/metabolismo , Proteínas/genética , Nicho de Células-Tronco/genética , Células-Tronco/metabolismo , Animais , Medula Óssea/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Citocinas , Citometria de Fluxo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linfopoese/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Timo/metabolismo , Fatores de Tempo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
12.
Nat Immunol ; 12(3): 255-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278737

RESUMO

Here we describe a reporter mouse strain designed to map the fate of cells that have activated interleukin 17A (IL-17A). We found that IL-17-producing helper T cells (T(H)17 cells) had distinct plasticity in different inflammatory settings. Chronic inflammatory conditions in experimental autoimmune encephalomyelitis (EAE) caused a switch to alternative cytokines in T(H)17 cells, whereas acute cutaneous infection with Candida albicans did not result in the deviation of T(H)17 cells to the production of alternative cytokines, although IL-17A production was shut off in the course of the infection. During the development of EAE, interferon-γ (IFN-γ) and other proinflammatory cytokines in the spinal cord were produced almost exclusively by cells that had produced IL-17 before their conversion by IL-23 ('ex-T(H)17 cells'). Thus, this model allows the actual functional fate of effector T cells to be related to T(H)17 developmental origin regardless of IL-17 expression.


Assuntos
Inflamação , Interleucina-17/imunologia , Linfócitos T/imunologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Citometria de Fluxo , Genes Reporter , Interferon gama/imunologia , Interleucina-17/genética , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
13.
Nat Immunol ; 11(6): 477-85, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20431620

RESUMO

Although the relationship between hematopoietic stem cells and progenitor populations has been investigated extensively under steady-state conditions, the dynamic response of the hematopoietic compartment during acute infection is largely unknown. Here we show that after infection of mice with Plasmodium chabaudi, a c-Kit(hi) progenitor subset positive for interleukin 7 receptor-alpha (IL-7Ralpha) emerged that had both lymphoid and myeloid potential in vitro. After being transferred into uninfected alymphoid or malaria-infected hosts, IL-7Ralpha(+)c-Kit(hi) progenitors generated mainly myeloid cells that contributed to the clearance of infected erythrocytes in infected hosts. The generation of these infection-induced progenitors was critically dependent on interferon-gamma (IFN-gamma) signaling in hematopoietic progenitors. Thus, IFN-gamma is a key modulator of hematopoiesis and innate and adaptive immunity during acute malaria infection.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Interferon gama/imunologia , Malária/imunologia , Células Progenitoras Mieloides/imunologia , Proteínas Proto-Oncogênicas c-kit/imunologia , Receptores de Interleucina-7/imunologia , Transdução de Sinais , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata , Camundongos , Plasmodium chabaudi , Subpopulações de Linfócitos T/imunologia
14.
Blood ; 114(27): 5522-31, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19837977

RESUMO

Host responses controlling blood-stage malaria include both innate and acquired immune effector mechanisms. During Plasmodium chabaudi infection in mice, a population of CD11b(high)Ly6C(+) monocytes are generated in bone marrow, most of which depend on the chemokine receptor CCR2 for migration from bone marrow to the spleen. In the absence of this receptor mice harbor higher parasitemias. Most importantly, splenic CD11b(high)Ly6C(+) cells from P chabaudi-infected wild-type mice significantly reduce acute-stage parasitemia in CCR2(-/-) mice. The CD11b(high)Ly6C(+) cells in this malaria infection display effector functions such as production of inducible nitric oxide synthase and reactive oxygen intermediates, and phagocytose P chabaudi parasites in vitro, and in a proportion of the cells, in vivo in the spleen, suggesting possible mechanisms of parasite killing. In contrast to monocyte-derived dendritic cells, CD11b(high)Ly6C(+) cells isolated from malaria-infected mice express low levels of major histocompatibility complex II and have limited ability to present the P chabaudi antigen, merozoite surface protein-1, to specific T-cell receptor transgenic CD4 T cells and fail to activate these T cells. We propose that these monocytes, which are rapidly produced in the bone marrow as part of the early defense mechanism against invading pathogens, are important for controlling blood-stage malaria parasites.


Assuntos
Movimento Celular/fisiologia , Monócitos/parasitologia , Plasmodium chabaudi/fisiologia , Baço/parasitologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/parasitologia , Células Apresentadoras de Antígenos/patologia , Antígenos Ly/metabolismo , Antígeno CD11b/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/parasitologia , Linfócitos T CD4-Positivos/patologia , Citometria de Fluxo , Interações Hospedeiro-Parasita , Malária/sangue , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Parasitemia/metabolismo , Fagocitose/fisiologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Baço/metabolismo , Baço/patologia , Linfócitos T/metabolismo , Linfócitos T/parasitologia , Linfócitos T/patologia , Fator de Necrose Tumoral alfa/metabolismo
15.
Proc Natl Acad Sci U S A ; 105(25): 8691-6, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18562288

RESUMO

A model of chemical thymectomy by inducible Rag ablation was used to study peripheral T cell homeostasis. Induction of Rag ablation was efficient and complete, leading to cessation of thymic T cell production within 3-4 weeks. The decay of peripheral T cells became apparent with a delay of an additional 2-3 weeks and was entirely accounted for by loss of naïve T cells, whereas numbers of memory phenotype and regulatory T cells were not decreased. Naïve CD4 T cells decayed with an average half-life of 50 days, whereas naïve CD8 T cells exhibited a considerably longer half-life. The rapid decay of naïve CD4 T cells was not caused by intrinsic survival differences compared with naïve CD8 T cells, but was caused by changes in the lymphopenic environment resulting in higher microbial load and consequential activation. This finding suggests that in lymphopenic conditions involving compromised thymic function replenishment and survival of a naïve CD4 T cell repertoire may be severely curtailed because of chronic activation. Such a scenario might play a role in the aging immune system and chronic viral infection, such as HIV infection, and contribute to loss of CD4 T cells and impaired immune function. As our data show, continued replenishment with cells from the thymus seems to be required to maintain efficient gut mucosal defense.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária , Timo/imunologia , Animais , Antígenos/imunologia , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Transgênicos , Timo/metabolismo
16.
Expert Rev Mol Med ; 8(6): 1-22, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16556343

RESUMO

Malaria kills approximately 1-2 million people every year, mostly in sub-Saharan Africa and in Asia. These deaths are at the most severe end of a scale of pathologies affecting approximately 500 million people per year. Much of the pathogenesis of malaria is caused by inappropriate or excessive immune responses mounted by the body to eliminate malaria parasites. In this review, we examine the evidence that immunopathology is responsible for malaria disease in the context of what we have learnt from animal models of malaria. In particular, we look in detail at the processes involved in endothelial cell damage leading to syndromes such as cerebral malaria, as well as generalised systemic manifestations such as anaemia, cachexia and problems with thermoregulation of the body. We also consider malaria in light of the variation of the severity of disease observed among people, and discuss the contribution from animal models to our understanding of this variation. Finally, we discuss some of the implications of immunopathology, and of host and parasite genetic variation, for the design and implementation of anti-malarial vaccines.


Assuntos
Modelos Animais de Doenças , Malária/imunologia , Camundongos/imunologia , Anemia/imunologia , Anemia/parasitologia , Animais , Interações Hospedeiro-Parasita/imunologia , Humanos , Malária/complicações , Malária/terapia , Camundongos/parasitologia , Plasmodium/fisiologia
17.
Eur J Immunol ; 33(2): 314-25, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12548562

RESUMO

Bacteriophage P1 Cre/loxP based systems can be used to manipulate the genomes ofmice in vivo and in vitro, allowing the generation of tissue-specific conditional mutants. We have generated mouse lines expressing Cre recombinase in hematopoietic tissues using the vav regulatory elements, or in lymphoid cells using the hCD2 promoter and locus control region (LCR). The R26R-EYFP Cre reporter mouse line was used to determine the pattern of Cre expression in each line and enabled the assessment of Cre activity at a single-cell level. Analysis showed that the vav promoter elements were able to direct Cre-mediated recombination in all cells of the hematopoietic system. The hCD2 promoter and LCR on the other hand were able to drive Cre-mediated recombination only in T cells and B cells, but not in other hematopoietic cell types. Furthermore, in the appropriate tissues, deletion of the floxed target was complete in all cells, thereby excluding the possibility of variegated expression of the Cre transgene. Both of these Cre-transgenic lines will be useful in generating tissue-specific gene deletions within all the cells of hematopoietic or lymphoid tissues.


Assuntos
Marcação de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Integrases/biossíntese , Tecido Linfoide/metabolismo , Proteínas Virais/biossíntese , Animais , Linfócitos B/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Bacteriófago P1/genética , Antígenos CD2/genética , Linhagem da Célula , Genes Reporter , Humanos , Integrases/genética , Região de Controle de Locus Gênico , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Proteínas Oncogênicas/genética , Especificidade de Órgãos , Proteínas Proto-Oncogênicas c-vav , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Linfócitos T/metabolismo , Testículo/metabolismo , Proteínas Virais/genética
18.
Immunity ; 16(3): 465-77, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11911830

RESUMO

Several experimental evidences suggested that beta1 integrin-mediated adhesion of hematopoietic stem cells (HSC) is important for their function in the bone marrow (BM). Using induced deletion of the beta1 integrin gene restricted to the hematopoietic system, we show that beta1 integrin is not essential for HSC retention in the BM, hematopoiesis, and trafficking of lymphocytes. However, immunization with a T cell-dependent antigen resulted in virtually no IgM production and an increased secretion of IgG in mutant mice, while the response to a T cell-independent type 2 antigen showed decreases in both IgM and IgG. These data suggest that beta1 integrins are necessary for the primary IgM antibody response.


Assuntos
Formação de Anticorpos/genética , Hematopoese/genética , Imunoglobulina M/imunologia , Integrina beta1/genética , Linfócitos T/imunologia , Animais , Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Deleção de Genes , Regulação da Expressão Gênica/imunologia , Imunoglobulina M/biossíntese , Imunoglobulina M/genética , Integrina beta1/imunologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA