Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Genet ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709457

RESUMO

RNA polymerase sigma factors are indispensable in the process of bacterial transcription. They are responsible for a given gene's promoter region recognition on template DNA and hence determine specificity of RNA polymerase and play a significant role in gene expression regulation. Here, we present a simple and unified protocol for purification of all seven Escherichia coli RNA polymerase sigma factors. In our approach, we took advantage of the His8-SUMO tag, known to increase protein solubilization. Sigma factors were first purified in N-terminal fusions with this tag, which was followed by tag removal with Ulp1 protease. This allowed to obtain proteins in their native form. In addition, the procedure is simple and requires only one resin type. With the general protocol we employed, we were able to successfully purify σD, σE, σS, and σN. Final step modification was required for σF, while for σH and σFecI, denaturing conditions had to be applied. All seven sigma factors were fully functional in forming an active holoenzyme with core RNA polymerase which we demonstrated with EMSA studies.

2.
Vet Microbiol ; 293: 110092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615476

RESUMO

ECF (extracytoplasmic function) σ factors, members of the σ70-family, are the largest class of alternative σ factors which are stimulated in the presence of specific signals and direct RNA polymerase to transcribe a defined subset of genes. Thanks to them, bacterial pathogens can effectively reprogram their gene expression and, consequently, survive in the host and establish infection in a relatively short time. The number of ECF σ factors encoded within bacterial genomes is different depending on a given species and it reflects the likelihood that these bacteria will encounter harsh environmental conditions. The genome of L. interrogans, a zoonotic pathogen responsible for leptospirosis, is predicted to encode 11 ECF σE-type factors, but none of them have been characterized biochemically to date and their functions are still unknown. Here, we focused on one of the leptospiral ECF σ factors, namely LIC_12757, which was previously found to be up-regulated at elevated temperatures and may be related to the expression of clpB encoding an important L. interrogans virulence factor. We report cloning of the coding sequence of the LIC_12757 gene, its expression with the pET system and biochemical characterization of LIC_12757. By performing EMSA and in vitro transcription assays, we provide strong evidence that LIC_12757 indeed functions as a transcriptional factor that enables RNA polymerase to bind to the specific σE-type promoter and to initiate transcription. Interestingly, we demonstrate that LIC_12757 is autoregulated at the transcriptional level. Our study is a first step towards determining key aspects of LIC_12757 function in pathogenic Leptospira.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Leptospira interrogans , Fator sigma , Leptospira interrogans/genética , Fator sigma/genética , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Leptospirose/microbiologia , Leptospirose/veterinária , Fatores de Virulência/genética , Regiões Promotoras Genéticas , Clonagem Molecular
3.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834725

RESUMO

Urinary tract infections are one of the most frequent bacterial diseases worldwide. UPECs are the most prominent group of bacterial strains among pathogens responsible for prompting such infections. As a group, these extra-intestinal infection-causing bacteria have developed specific features that allow them to sustain and develop in their inhabited niche of the urinary tract. In this study, we examined 118 UPEC isolates to determine their genetic background and antibiotic resistance. Moreover, we investigated correlations of these characteristics with the ability to form biofilm and to induce a general stress response. We showed that this strain collection expressed unique UPEC attributes, with the highest representation of FimH, SitA, Aer, and Sfa factors (100%, 92.5%, 75%, and 70%, respectively). According to CRA (Congo red agar) analysis, the strains particularly predisposed to biofilm formation represented 32.5% of the isolates. Those biofilm forming strains presented a significant ability to accumulate multi-resistance traits. Most notably, these strains presented a puzzling metabolic phenotype-they showed elevated basal levels of (p)ppGpp in the planktonic phase and simultaneously exhibited a shorter generation time when compared to non-biofilm-forming strains. Moreover, our virulence analysis showed these phenotypes to be crucial for the development of severe infections in the Galleria mellonella model.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Virulência/genética , Antibacterianos/farmacologia , Escherichia coli Uropatogênica/genética , Guanosina Pentafosfato , Infecções por Escherichia coli/microbiologia , Fatores de Virulência/genética , Infecções Urinárias/microbiologia
5.
Nucleic Acids Res ; 50(19): 10964-10980, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36271797

RESUMO

Bacterial gene expression depends on the efficient functioning of global transcriptional networks, however their interconnectivity and orchestration rely mainly on the action of individual DNA binding proteins called transcription factors (TFs). TFs interact not only with their specific target sites, but also with secondary (off-target) sites, and vary in their promiscuity. It is not clear yet what mechanisms govern the interactions with secondary sites, and how such rewiring affects the overall regulatory network, but this could clearly constrain horizontal gene transfer. Here, we show the molecular mechanism of one such off-target interaction between two unrelated TFs in Escherichia coli: the C regulatory protein of a Type II restriction-modification system, and the RacR repressor of a defective prophage. We reveal that the C protein interferes with RacR repressor expression, resulting in derepression of the toxic YdaT protein. These results also provide novel insights into regulation of the racR-ydaST operon. We mapped the C regulator interaction to a specific off-target site, and also visualized C protein dynamics, revealing intriguing differences in single molecule dynamics in different genetic contexts. Our results demonstrate an apparent example of horizontal gene transfer leading to adventitious TF cross-talk with negative effects on the recipient's viability. More broadly, this study represents an experimentally-accessible model of a regulatory constraint on horizontal gene transfer.


Assuntos
Enzimas de Restrição-Modificação do DNA , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Prófagos/genética , Prófagos/metabolismo , Regulação Bacteriana da Expressão Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Redes Reguladoras de Genes
6.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054801

RESUMO

Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.


Assuntos
Adaptação Fisiológica , Aliivibrio fischeri/fisiologia , Oceanos e Mares , Proteômica , Salinidade , Shewanella/fisiologia , Vibrio/fisiologia , Adaptação Fisiológica/genética , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ontologia Genética , Chaperonas Moleculares/metabolismo , Ácidos Nucleicos/metabolismo , Concentração Osmolar , Osmose , Pressão Osmótica , Ligação Proteica , Proteoma/metabolismo , Shewanella/genética , Shewanella/metabolismo , Transcrição Gênica , Vibrio/genética , Vibrio/metabolismo
7.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948189

RESUMO

The axe-txe type II toxin-antitoxin (TA) system is characterized by a complex and multilayered mode of gene expression regulation. Precise and tight control of this process is crucial to keep the toxin in an appropriate balance with the cognate antitoxin until its activation is needed for the cell. In this report, we provide evidence that a minigene encoded within the axe-txe operon influences translation of the Txe toxin. This is the first example to date of such a regulatory mechanism identified in the TA modules. Here, in a series of genetic studies, we employed translational reporter gene fusions to establish the molecular basis of this phenomenon. Our results show that translation of the two-codon mini-ORF displays an in cis mode of action, and positively affects the expression of txe, possibly by increasing its mRNA stability through protection from an endonuclease attack. Moreover, we established that the reading frame in which the two cistrons are encoded, as well as the distance between them, are critical parameters that affect the level of such regulation. In addition, by searching for two-codon ORFs we found sequences of several potential minigenes in the leader sequences of several other toxins belonging to the type II TA family. These findings suggest that this type of gene regulation may not only apply for the axe-txe cassette, but could be more widespread among other TA systems.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Sequências Reguladoras de Ácido Nucleico/genética , Sistemas Toxina-Antitoxina/genética , Antitoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Expressão Gênica/genética , Fases de Leitura Aberta/genética , Óperon/genética , Regiões Promotoras Genéticas/genética
8.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200430

RESUMO

The virus-host interaction requires a complex interplay between the phage strategy of reprogramming the host machinery to produce and release progeny virions, and the host defense against infection. Using RNA sequencing, we investigated the phage-host interaction to resolve the phenomenon of improved lytic development of P1vir phage in a DksA-deficient E. coli host. Expression of the ant1 and kilA P1vir genes in the wild-type host was the highest among all and most probably leads to phage virulence. Interestingly, in a DksA-deficient host, P1vir genes encoding lysozyme and holin are downregulated, while antiholins are upregulated. Gene expression of RepA, a protein necessary for replication initiating at the phage oriR region, is increased in the dksA mutant; this is also true for phage genes responsible for viral morphogenesis and architecture. Still, it seems that P1vir is taking control of the bacterial protein, sugar, and lipid metabolism in both, the wild type and dksA- hosts. Generally, bacterial hosts are reacting by activating their SOS response or upregulating the heat shock proteins. However, only DksA-deficient cells upregulate their sulfur metabolism and downregulate proteolysis upon P1vir infection. We conclude that P1vir development is enhanced in the dksA mutant due to several improvements, including replication and virion assembly, as well as a less efficient lysis.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/patogenicidade , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Interações entre Hospedeiro e Microrganismos/genética , Transcriptoma , Proteínas de Bactérias/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Virulência
9.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072628

RESUMO

Bacteriophage P1 is among the best described bacterial viruses used in molecular biology. Here, we report that deficiency in the host cell DksA protein, an E. coli global transcription regulator, improves P1 lytic development. Using genetic and microbiological approaches, we investigated several aspects of P1vir biology in an attempt to understand the basis of this phenomenon. We found several minor improvements in phage development in the dksA mutant host, including more efficient adsorption to bacterial cell and phage DNA replication. In addition, gene expression of the main repressor of lysogeny C1, the late promoter activator Lpa, and lysozyme are downregulated in the dksA mutant. We also found nucleotide substitutions located in the phage immunity region immI, which may be responsible for permanent virulence of phage P1vir. We suggest that downregulation of C1 may lead to a less effective repression of lysogeny maintaining genes and that P1vir may be balancing between lysis and lysogeny, although finally it is able to enter the lytic pathway only. The mentioned improvements, such as more efficient replication and more "gentle" cell lysis, while considered minor individually, together may account for the phenomenon of a more efficient P1 phage development in a DksA-deficient host.


Assuntos
Bacteriófagos/fisiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/virologia , Deleção de Genes , Interações Hospedeiro-Patógeno , Regulação Viral da Expressão Gênica , Lisogenia , Mutação , Replicação Viral
11.
Front Immunol ; 12: 614320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708208

RESUMO

Heat shock proteins (Hsp) are constitutive and stress-induced molecules which have been reported to impact innate and adaptive immune responses. Here, we evaluated the role of Hsp70 as a treatment target in the imiquimod-induced, psoriasis-like skin inflammation mouse model and related in vitro assays. We found that immunization of mice with Hsp70 resulted in decreased clinical and histological disease severity associated with expansion of T cells in favor of regulatory subtypes (CD4+FoxP3+/CD4+CD25+ cells). Similarly, anti-Hsp70 antibody treatment led to lowered disease activity associated with down-regulation of pro-inflammatory Th17 cells. A direct stimulating action of Hsp70 on regulatory T cells and its anti-proliferative effects on keratinocytes were confirmed in cell culture experiments. Our observations suggest that Hsp70 may be a promising therapeutic target in psoriasis and potentially other autoimmune dermatoses.


Assuntos
Anticorpos/imunologia , Dermatite/etiologia , Dermatite/metabolismo , Suscetibilidade a Doenças , Proteínas de Choque Térmico HSP70/imunologia , Animais , Anticorpos/farmacologia , Biomarcadores , Biópsia , Citocinas/metabolismo , Dermatite/diagnóstico , Dermatite/tratamento farmacológico , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Feminino , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/genética , Imunização , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Proteínas Recombinantes , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo
12.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260607

RESUMO

Transcriptional repression is a mechanism which enables effective gene expression switch off. The activity of most of type II toxin-antitoxin (TA) cassettes is controlled in this way. These cassettes undergo negative autoregulation by the TA protein complex which binds to the promoter/operator sequence and blocks transcription initiation of the TA operon. Precise and tight control of this process is vital to avoid uncontrolled expression of the toxin component. Here, we employed a series of in vivo and in vitro experiments to establish the molecular basis for previously observed differences in transcriptional activity and repression levels of the pyy and pat promoters which control expression of two homologous TA systems, YefM-YoeB and Axe-Txe, respectively. Transcriptional fusions of promoters with a lux reporter, together with in vitro transcription, EMSA and footprinting assays revealed that: (1) the different sequence composition of the -35 promoter element is responsible for substantial divergence in strengths of the promoters; (2) variations in repression result from the TA repressor complex acting at different steps in the transcription initiation process; (3) transcription from an additional promoter upstream of pat also contributes to the observed inefficient repression of axe-txe module. This study provides evidence that even closely related TA cassettes with high sequence similarity in the promoter/operator region may employ diverse mechanisms for transcriptional regulation of their genes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sistemas Toxina-Antitoxina , Toxinas Bacterianas/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Modelos Biológicos , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Transcrição Gênica
13.
Front Microbiol ; 11: 581271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193211

RESUMO

The Mesh1 class of hydrolases found in bacteria, metazoans and humans was discovered as able to cleave an intact pyrophosphate residue esterified on the 3'hydroxyl of (p)ppGpp in a Mn2+ dependent reaction. Here, thin layer chromatography (TLC) qualitative evidence is presented indicating the substrate specificity of Mesh1 from Drosophila melanogaster and human MESH1 also extends to the (p)ppApp purine analogs. More importantly, we developed real time enzymatic assays, coupling ppNpp hydrolysis to NADH oxidation and pppNpp hydrolysis to NADP+ reduction, which facilitate estimation of kinetic constants. Furthermore, by using this assay technique we confirmed TLC observations and also revealed that purified small alarmone hydrolase (SAHMex) from Methylobacterium extorquens displays a strong hydrolase activity toward (p)ppApp but only negligible activity toward (p)ppGpp. In contrast, the substrate specificity of the hydrolase present in catalytically active N-terminal domain of the RSH protein from Streptococcus equisimilis (RelSeq) includes (p)ppGpp but not (p)ppApp. It is noteworthy that the RSH protein from M. extorquens (RSHMex) has been recently shown to synthesize both (p)ppApp and (p)ppGpp.

14.
Sci Rep ; 10(1): 16074, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999370

RESUMO

There is a growing appreciation for the diverse regulatory consequences of the family of proteins that bind to the secondary channel of E. coli RNA polymerase (RNAP), such as GreA, GreB or DksA. Similar binding sites could suggest a competition between them. GreA is characterised to rescue stalled RNAP complexes due to its antipause activity, but also it is involved in transcription fidelity and proofreading. Here, overexpression of GreA is noted to be lethal independent of its antipause activity. A library of random GreA variants has been used to isolate lethality suppressors to assess important residues for GreA functionality and its interaction with the RNA polymerase. Some mutant defects are inferred to be associated with altered binding competition with DksA, while other variants seem to have antipause activity defects that cannot reverse a GreA-sensitive pause site in a fliC::lacZ reporter system. Surprisingly, apparent binding and cleavage defects are found scattered throughout both the coiled-coil and globular domains. Thus, the coiled-coil of GreA is not just a measuring stick ensuring placement of acidic residues precisely at the catalytic centre but also seems to have binding functions. These lethality suppressor mutants may provide valuable tools for future structural and functional studies.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ligação Competitiva , Análise Mutacional de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/química , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genes Letais , Variação Genética , Modelos Moleculares , Mutagênese , Mutação , Regiões Promotoras Genéticas , Fatores de Transcrição/química , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Regulação para Cima
15.
Cell Stress Chaperones ; 25(6): 1105-1110, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32358783

RESUMO

Extracellular heat shock proteins (Hsp) influence the adaptive immune response and may ameliorate pathogenesis of autoimmune diseases. While some preclinical observations suggest that highly conserved bacterial and/or murine Hsp70 peptides have potential utility in treatment of rheumatoid arthritis (RA) via induction of T regulatory cells (Treg), the role of extracellular inducible human Hsp70 in adaptive immune processes requires further investigation. The present study evaluated Hsp70 influence on inflammatory cytokine-mediated modulation of T cell immunophenotype in ways that influence RA onset and severity. Initial experiments in the present investigation revealed that serum levels of Hsp70 are approximately 2-fold higher in RA patients versus healthy control subjects. To explore the effect of extracellular Hsp70 on key processes underlying the adaptive immune system, the effects of a highly pure, substrate-, and endotoxin-free human Hsp70 on polarization of the T helper cell subpopulations, including CD4+IL-17+ (Th17), CD4+FoxP3+ (Treg), CD4+IFN-γ+ (Th1), and CD4+IL-4+ (Th2), were studied in naïve human peripheral blood mononuclear cell (PBMC) cultures stimulated with anti-CD3/28 mAb. Major findings included an observation that while Hsp70 treatment increased Th17 frequencies and Th17/Treg ratio, the frequency of Th1 cells and the Th1/Th2 ratio were significantly decreased in the Hsp70-treated PBMC cultures. Moreover, data shown here provides preliminary suggestion that major contributing Hsp70-mediated immunomodulation includes interleukin 6 (IL-6) influence on Th17/Treg and Th1/Th2, since expression of this inflammatory cytokine is enhanced by in vitro Hsp70 treatment. These results are nevertheless preliminary and require further investigation to validate the above model.


Assuntos
Artrite Reumatoide/metabolismo , Espaço Extracelular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Proteínas de Choque Térmico HSP70/sangue , Humanos , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Contagem de Linfócitos , Células Th1/imunologia , Células Th17/imunologia
16.
Int J Mol Sci ; 20(24)2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31847479

RESUMO

There is limited information on gene expression in the pathogenic spirochaete Leptospira interrogans and genetic mechanisms controlling its virulence. Transcription is the first step in gene expression that is often determined by environmental effects, including infection-induced stresses. Alterations in the environment result in significant changes in the transcription of many genes, allowing effective adaptation of Leptospira to mammalian hosts. Thus, promoter and transcriptional start site identification are crucial for determining gene expression regulation and for the understanding of genetic regulatory mechanisms existing in Leptospira. Here, we characterized the promoter region of the L. interrogans clpB gene (clpBLi) encoding an AAA+ molecular chaperone ClpB essential for the survival of this spirochaete under thermal and oxidative stresses, and also during infection of the host. Primer extension analysis demonstrated that transcription of clpB in L. interrogans initiates at a cytidine located 41 bp upstream of the ATG initiation codon, and, to a lesser extent, at an adenine located 2 bp downstream of the identified site. Transcription of both transcripts was heat-inducible. Determination of clpBLi transcription start site, combined with promoter transcriptional activity assays using a modified two-plasmid system in E. coli, revealed that clpBLi transcription is controlled by the ECF σE factor. Of the ten L. interrogans ECF σ factors, the factor encoded by LIC_12757 (LA0876) is most likely to be the key regulator of clpB gene expression in Leptospira cells, especially under thermal stress. Furthermore, clpB expression may be mediated by ppGpp in Leptospira.


Assuntos
Endopeptidase Clp/genética , Escherichia coli/genética , Leptospira interrogans/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Spirochaetales/genética , Transcrição Gênica/genética , Proteínas de Bactérias/genética , Sequência de Bases , Regulação Bacteriana da Expressão Gênica/genética , Chaperonas Moleculares , Sítio de Iniciação de Transcrição/fisiologia
17.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652493

RESUMO

GreA is a well-characterized transcriptional factor that acts primarily by rescuing stalled RNA polymerase complexes, but has also been shown to be the major transcriptional fidelity and proofreading factor, while it inhibits DNA break repair. Regulation of greA gene expression itself is still not well understood. So far, it has been shown that its expression is driven by two overlapping promoters and that greA leader encodes a small RNA (GraL) that is acting in trans on nudE mRNA. It has been also shown that GreA autoinhibits its own expression in vivo. Here, we decided to investigate the inner workings of this autoregulatory loop. Transcriptional fusions with lacZ reporter carrying different modifications (made both to the greA promoter and leader regions) were made to pinpoint the sequences responsible for this autoregulation, while GraL levels were also monitored. Our data indicate that GreA mediated regulation of its own gene expression is dependent on GraL acting in cis (a rare example of dual-action sRNA), rather than on the promoter region. However, a yet unidentified, additional factor seems to participate in this regulation as well. Overall, the GreA/GraL regulatory loop seems to have unique but hard to classify properties.


Assuntos
Proteínas de Escherichia coli/genética , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/metabolismo , Fatores de Transcrição/genética , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Regiões Promotoras Genéticas , Pequeno RNA não Traduzido/genética , Fatores de Transcrição/metabolismo
18.
Front Microbiol ; 10: 859, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068922

RESUMO

In bacteria, the so-called stringent response is responsible for adaptation to changing environmental conditions. This response is mediated by guanosine derivatives [(p)ppGpp], synthesized by either large mono-functional RelA or bi-functional SpoT (synthesis and hydrolysis) enzymes in ß- and γ-proteobacteria, such as Escherichia coli. In Firmicutes and α-, δ-, and 𝜀-proteobacteria, large bifunctional Rel-SpoT-homologs (RSH), often accompanied by small (p)ppGpp synthetases and/or hydrolases devoid of regulatory domains, are responsible for (p)ppGpp turnover. Here, we report on surprising in vitro and in vivo properties of an RSH enzyme from Methylobacterium extorquens (RSHMex). We find that this enzyme possesses some unique features, e.g., it requires cobalt cations for the most efficient (p)ppGpp synthesis, in contrast to all other known specific (p)ppGpp synthetases that require Mg2+. In addition, it can synthesize pppApp, which has not been demonstrated in vitro for any Rel/SpoT/RSH enzyme so far. In vivo, our studies also show that RSHMex is active in Escherichia coli cells, as it can complement E. coli ppGpp0 growth defects and affects rrnB P1-lacZ fusion activity in a way expected for an RSH enzyme. These studies also led us to discover pppApp synthesis in wild type E. coli cells (not carrying the RSHMex enzyme), which to our knowledge has not been demonstrated ever before. In the light of our recent discovery that pppApp directly regulates E. coli RNAP transcription in vitro in a manner opposite to (p)ppGpp, this leads to a possibility that pppApp is a new member of the nucleotide second-messenger family that is widely present in bacterial species.

20.
Nat Microbiol ; 3(8): 862-863, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046172
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA