Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257336

RESUMO

Naturally occurring stilbenoids, such as the (E)-stilbenoid resveratrol and the (Z)-stilbenoid combretastatin A4, have been considered as promising lead compounds for the development of anticancer drugs. The antitumour properties of stilbenoids are known to be modulated by cytochrome P450 enzymes CYP1A1 and CYP1B1, which contribute to extrahepatic phase I xenobiotic and drug metabolism. Thirty-four methyl ether analogues of resveratrol were synthesised, and their anticancer properties were assessed, using the MTT cell proliferation assay on a panel of human breast cell lines. Breast tumour cell lines that express CYP1 were significantly more strongly affected by the resveratrol analogues than the cell lines that did not have CYP1 activity. Metabolism studies using isolated CYP1 enzymes provided further evidence that (E)-stilbenoids can be substrates for these enzymes. Structures of metabolic products were confirmed by comparison with synthetic standards and LC-MS co-elution studies. The most promising stilbenoid was (E)-4,3',4',5'-tetramethoxystilbene (DMU212). The compound itself showed low to moderate cytotoxicity, but upon CYP1-catalysed dealkylation, some highly cytotoxic metabolites were formed. Thus, DMU212 selectively affects proliferation of cells that express CYP1 enzymes.


Assuntos
Citocromo P-450 CYP1A1 , Família 1 do Citocromo P450 , Humanos , Resveratrol/farmacologia , Catálise , Linhagem Celular Tumoral
2.
Cancer Lett ; 274(1): 54-60, 2009 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18976853

RESUMO

Breast cancer is a major cause of death worldwide. Amongst the various forms of treatment chemoprevention is favoured and natural products such as the dietary flavonoids have been examined for their cancer preventative activity. In this study we investigated the anticancer activity of the flavonoid diosmetin, as a result of cytochrome P450 CYP1 metabolism. Diosmetin was metabolized to luteolin via an aromatic demethylation reaction on the B-ring from CYP1A1, CYP1B1 and the hepatic isozyme CYP1A2. CYP1A1 and CYP1A2 also produced additional unidentified metabolites. CYP1B1 showed the lowest apparent KM and CYP1A1 the highest apparent Kcat. Diosmetin was also metabolized to luteolin in estrogen receptor positive breast cell-line (MCF-7 cells) preinduced for 24 h with the potent CYP1 inducer 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Treatment of MCF-7 cells with TCDD caused bioactivation of diosmetin enhancing its cytotoxicity. Taken together these data suggest that the flavonoid diosmetin is metabolised to the more active molecule luteolin by CYP1 family enzymes.


Assuntos
Neoplasias da Mama/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides/farmacologia , Fitoestrógenos/farmacologia , Hidrocarboneto de Aril Hidroxilases , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP1B1 , Humanos , Luteolina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
3.
Breast Cancer Res ; 10(3): R39, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18454852

RESUMO

INTRODUCTION: The natural product eupatorin has been reported to have antiproliferative activity in tumour cell lines, but the exact mechanism is unclear. The cytochromes P450 CYP1B1, CYP1A1, and CYP1A2 have been shown to participate in the activation of various xenobiotics, compounds derived from the diet as well as chemotherapeutic drugs. CYP1B1 and CYP1A1 have also been proposed as targets for cancer chemotherapy for their differential and selective overexpression in tumour cells. In this study, we aimed to identify a possible mechanism of action for the antiproliferative effect of eupatorin, which can be attributed to CYP1 family-mediated metabolism. METHODS: The study focuses on the antiproliferative action of eupatorin on the human breast carcinoma cell line MDA-MB-468 and on a cell line derived from normal mammary tissue, MCF-10A. The cytotoxicity of the flavone, its effect on the cell cycle of the abovementioned cell lines, and its metabolism by CYP1 family enzymes were examined. RESULTS: Eupatorin showed a dose-dependent inhibitory effect of cell growth on MDA-MB-468 cells with a submicromolar median inhibition concentration (IC50) whereas the IC50 of this compound in MCF-10A cells was considerably higher. The antiproliferative effect, as measured by EROD (ethoxyresorufin-O-deethylase) assay and Western immunoblotting, was attributed mainly to CYP1A1 expression in MDA-MB-468 cells but not in MCF-10A cells. Moreover, CYP1 family enzymes were shown to metabolise eupatorin in vitro to the flavone cirsiliol and two other unidentified metabolites. Metabolism of eupatorin was also detected in MDA-MB-468 cell cultures, whereas metabolism by MCF-10A cells was negligible. Eupatorin was further shown to arrest the cell cycle of the CYP1-expressing cell line MDA-MB-468 in G2/M phase, whereas no effect was observed in MCF-10A cells, which do not express CYP1 enzymes. The effect of eupatorin on the MDA-MB-468 cell cycle could be reversed by co-application of the CYP1 inhibitor acacetin. CONCLUSION: The flavone eupatorin is selectively activated in breast cancer cells, but not in normal breast cells, due to CYP1 family metabolism. This provides a basis for selectivity which is desired against breast tumour cells. In this sense, eupatorin is shown by this study to be a very promising chemopreventative candidate that should be examined further in an in vivo study.


Assuntos
Antineoplásicos/farmacologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Flavonoides/farmacologia , Anticarcinógenos/farmacologia , Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP1B1 , Humanos , Concentração Inibidora 50 , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
4.
Int J Cancer ; 115(2): 194-201, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15688382

RESUMO

Naturally occurring molecules with putative cancer chemopreventive properties such as the phytoalexin resveratrol (3,5,4'-trihydroxystilbene) are lead molecules that guide the design of novel agents with improved pharmacologic properties. The synthetic resveratrol analog 3,4,5,4'-tetramethoxystilbene (DMU-212) has been shown to possess stronger antiproliferative properties in human colon cancer cells than resveratrol. We tested the hypothesis that DMU-212 is also a more potent inhibitor of adenoma development in the Apc(Min+) mouse, a model of human intestinal carcinogenesis. Apc(Min+) mice received either stilbene derivative with the diet (0.2%), and adenomas were counted after experiments were terminated. Resveratrol and DMU-212 decreased adenoma load by 27% and 24%, respectively, compared to untreated controls. Cyclooxygenase (COX) enzymes are important mechanistic targets of resveratrol, and we investigated whether DMU-212 interferes with the expression and activity of COX in human colon cells. Incubation of HCA-7 cancer cells for 24-96 hr with either stilbene derivative (1-50 microM) decreased prostaglandin E-2 (PGE-2) production, but only resveratrol decreased COX-2 protein expression. In mice, which received either stilbene derivative (0.2%) for 3 weeks with their diet, PGE-2 levels in the intestinal mucosa were reduced by between 45% and 62% compared to mice on control diet. While resveratrol inhibited enzyme activity in purified COX preparations, DMU-212 failed to do so. The PGE-2 decrease seen with DMU-212 in cells and in vivo is probably mediated via its metabolites. The results suggest that alteration of the resveratrol molecule to generate DMU-212 does not abrogate its ability to decrease adenoma number in Apc(Min+) mice or to interfere with PGE-2 generation in cells.


Assuntos
Adenoma/prevenção & controle , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias do Colo/prevenção & controle , Prostaglandina-Endoperóxido Sintases/metabolismo , Estilbenos/uso terapêutico , Adenoma/enzimologia , Adenoma/patologia , Animais , Quimioprevenção , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Ciclo-Oxigenase 2 , Dieta , Dinoprostona/metabolismo , Feminino , Genes APC/fisiologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Resveratrol , Ribonucleotídeo Redutases/antagonistas & inibidores , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA