Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3666, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871063

RESUMO

Forests across much of the United States are becoming denser. Trees growing in denser stands experience more competition for essential resources, which can make them more vulnerable to disturbances. Forest density can be expressed in terms of basal area, a metric that has been used to assess vulnerability of some forests to damage by certain insects or pathogens. A raster map of total tree basal area (TBA) for the conterminous United States was compared with annual (2000-2019) survey maps of forest damage due to insects and pathogens. Across each of four regions, median TBA was significantly higher within forest areas defoliated or killed by insects or pathogens than in areas without recorded damage. Therefore, TBA may serve as a regional-scale indicator of forest health and a first filter for identifying areas that merit finer-scale analysis of forest conditions.


Assuntos
Florestas , Insetos , Animais , Registros , Árvores
2.
Biol Rev Camb Philos Soc ; 97(4): 1511-1538, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35415952

RESUMO

Biodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well-being. Understanding how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fundamental metrics to help aggregate, harmonize, and interpret biodiversity observation data from diverse sources. Mapping and analyzing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of biodiversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composition EBVs (Genetic EBVs), which are metrics of within-species genetic variation. We review and bring together numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modeling, and technological advances. We propose four Genetic EBVs: (i) Genetic Diversity; (ii) Genetic Differentiation; (iii) Inbreeding; and (iv) Effective Population Size (Ne ). We rank Genetic EBVs according to their relevance, sensitivity to change, generalizability, scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs beyond current observations using various modeling approaches. Our review then explores challenges of aggregation, standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to maximize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made major advances in the past decade, each of which contributes to the practical and standardized framework for large-scale genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also challenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances, genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the foundation of all biodiversity and species' long-term persistence in the face of environmental change. We conclude with a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should anticipate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally.


Assuntos
Biodiversidade , Ecossistema , Conservação dos Recursos Naturais/métodos , Variação Genética , Humanos , Densidade Demográfica
3.
Proc Natl Acad Sci U S A ; 116(15): 7382-7386, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910953

RESUMO

Nonnative pests often cause cascading ecological impacts, leading to detrimental socioeconomic consequences; however, how plant diversity may influence insect and disease invasions remains unclear. High species diversity in host communities may promote pest invasions by providing more niches (i.e., facilitation), but it can also diminish invasion success because low host dominance may make it more difficult for pests to establish (i.e., dilution). Most studies to date have focused on small-scale, experimental, or individual pest/disease species, while large-scale empirical studies, especially in natural ecosystems, are extremely rare. Using subcontinental-level data, we examined the role of tree diversity on pest invasion across the conterminous United States and found that the tree-pest diversity relationships are hump-shaped. Pest diversity increases with tree diversity at low tree diversity (because of facilitation or amplification) and is reduced at higher tree diversity (as a result of dilution). Thus, tree diversity likely regulates forest pest invasion through both facilitation and dilution that operate simultaneously, but their relative strengths vary with overall diversity. Our findings suggest the role of native species diversity in regulating nonnative pest invasions.


Assuntos
Biodiversidade , Florestas , Interações Hospedeiro-Parasita , Insetos/fisiologia , Modelos Biológicos , Animais , Estados Unidos
4.
Syst Biol ; 67(6): 965-978, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548012

RESUMO

Unique responses to climate change can occur across intraspecific levels, resulting in individualistic adaptation or movement patterns among populations within a given species. Thus, the need to model potential responses among genetically distinct populations within a species is increasingly recognized. However, predictive models of future distributions are regularly fit at the species level, often because intraspecific variation is unknown or is identified only within limited sample locations. In this study, we considered the role of intraspecific variation to shape the geographic distribution of ponderosa pine (Pinus ponderosa), an ecologically and economically important tree species in North America. Morphological and genetic variation across the distribution of ponderosa pine suggest the need to model intraspecific populations: the two varieties (var. ponderosa and var. scopulorum) and several haplotype groups within each variety have been shown to occupy unique climatic niches, suggesting populations have distinct evolutionary lineages adapted to different environmental conditions. We utilized a recently available, geographically widespread dataset of intraspecific variation (haplotypes) for ponderosa pine and a recently devised lineage distance modeling approach to derive additional, likely intraspecific occurrence locations. We confirmed the relative uniqueness of each haplotype-climate relationship using a niche-overlap analysis, and developed ecological niche models (ENMs) to project the distribution for two varieties and eight haplotypes under future climate forecasts. Future projections of haplotype niche distributions generally revealed greater potential range loss than predicted for the varieties. This difference may reflect intraspecific responses of distinct evolutionary lineages. However, directional trends are generally consistent across intraspecific levels, and include a loss of distributional area and an upward shift in elevation. Our results demonstrate the utility in modeling intraspecific response to changing climate and they inform management and conservation strategies, by identifying haplotypes and geographic areas that may be most at risk, or most secure, under projected climate change.


Assuntos
Mudança Climática , Ecossistema , Modelos Biológicos , Pinus ponderosa/fisiologia , Filogenia , Pinus ponderosa/genética
5.
Ecol Lett ; 21(2): 217-224, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29194909

RESUMO

Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree mycorrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are characterised by thin forest floors and low soil C : N ratio, were invaded to a greater extent by non-native invasive species than ectomycorrhizal (ECM) dominant forests. Understory native species cover and richness had no strong associations with AM tree dominance. We also found no difference in the mycorrhizal type composition of understory invaders between AM and ECM dominant forests. Our results indicate that dominant forest tree mycorrhizal type is closely linked with understory invasions. The increased invader abundance in AM dominant forests can further facilitate nutrient cycling, leading to the alteration of ecosystem structure and functions.


Assuntos
Micorrizas , Plantas , Árvores , Ecossistema , Florestas , Espécies Introduzidas
6.
Sci Adv ; 3(5): e1603055, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28560343

RESUMO

Climate change can have profound impacts on biodiversity and the sustainability of many ecosystems. Various studies have investigated the impacts of climate change, but large-scale, trait-specific impacts are less understood. We analyze abundance data over time for 86 tree species/groups across the eastern United States spanning the last three decades. We show that more tree species have experienced a westward shift (73%) than a poleward shift (62%) in their abundance, a trend that is stronger for saplings than adult trees. The observed shifts are primarily due to the changes of subpopulation abundances in the leading edges and are significantly associated with changes in moisture availability and successional processes. These spatial shifts are associated with species that have similar traits (drought tolerance, wood density, and seed weight) and evolutionary histories (most angiosperms shifted westward and most gymnosperms shifted poleward). Our results indicate that changes in moisture availability have stronger near-term impacts on vegetation dynamics than changes in temperature. The divergent responses to climate change by trait- and phylogenetic-specific groups could lead to changes in composition of forest ecosystems, putting the resilience and sustainability of various forest ecosystems in question.


Assuntos
Mudança Climática , Florestas , Filogenia , Locos de Características Quantitativas , Árvores , Árvores/genética , Árvores/crescimento & desenvolvimento , Estados Unidos
7.
PLoS One ; 11(3): e0151811, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26985674

RESUMO

Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with discrete temporary glacial refugia. Our predictive climate niche models may inform strategies for further genetic research (e.g., sampling design) and conservation that promotes haplotype compatibility with projected changes in future climate.


Assuntos
Clima , Ecossistema , Haplótipos , Pinus ponderosa/genética , Evolução Biológica , Conservação dos Recursos Naturais , DNA Mitocondrial , Meio Ambiente , Variação Genética , Modelos Teóricos , Filogeografia , Estados Unidos
8.
Ecology ; 96(10): 2613-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649383

RESUMO

Habitat invasibility is a central focus of invasion biology, with implications for basic ecological patterns and processes and for effective invasion management. "Invasibility" is, however, one of the most elusive metrics and misused terms in ecology. Empirical studies and meta-analyses of invasibility have produced inconsistent and even conflicting results. This lack of consistency, and subsequent difficulty in making broad cross-habitat comparisons, stem in part from (1) the indiscriminant use of a closely related, but fundamentally different concept, that of degree of invasion (DI) or level of invasion; and (2) the lack of common invasibility metrics, as illustrated by our review of all invasibility-related papers published in 2013. To facilitate both cross-habitat comparison and more robust ecological generalizations, we clarify the definitions of invasibility and DI, and for the first time propose a common metric for quantifying invasibility based on a habitat's resource availability as inferred from relative resident species richness and biomass. We demonstrate the feasibility of our metric using empirical data collected from 2475 plots from three forest ecosystems in the eastern United States. We also propose a similar metric for DI. Our unified, resource-based metrics are scaled from 0 to 1, facilitating cross-habitat comparisons. Our proposed metrics clearly distinguish invasibility and DI from each other, which will help to (1) advance invasion ecology by allowing more robust testing of generalizations and (2) facilitate more effective invasive species control and management.


Assuntos
Biodiversidade , Florestas , Espécies Introduzidas , Modelos Biológicos , Plantas/classificação , Animais , Monitoramento Ambiental , Filogenia , Plantas/genética , Densidade Demográfica , Fatores de Tempo
9.
Am J Bot ; 100(8): 1562-79, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23876453

RESUMO

PREMISE OF THE STUDY: Ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) exhibits complicated patterns of morphological and genetic variation across its range in western North America. This study aims to clarify P. ponderosa evolutionary history and phylogeography using a highly polymorphic mitochondrial DNA marker, with results offering insights into how geographical and climatological processes drove the modern evolutionary structure of tree species in the region. METHODS: We amplified the mtDNA nad1 second intron minisatellite region for 3,100 trees representing 104 populations, and sequenced all length variants. We estimated population-level haplotypic diversity and determined diversity partitioning among varieties, races and populations. After aligning sequences of minisatellite repeat motifs, we evaluated evolutionary relationships among haplotypes. KEY RESULTS: The geographical structuring of the 10 haplotypes corresponded with division between Pacific and Rocky Mountain varieties. Pacific haplotypes clustered with high bootstrap support, and appear to have descended from Rocky Mountain haplotypes. A greater proportion of diversity was partitioned between Rocky Mountain races than between Pacific races. Areas of highest haplotypic diversity were the southern Sierra Nevada mountain range in California, northwestern California, and southern Nevada. CONCLUSIONS: Pinus ponderosa haplotype distribution patterns suggest a complex phylogeographic history not revealed by other genetic and morphological data, or by the sparse paleoecological record. The results appear consistent with long-term divergence between the Pacific and Rocky Mountain varieties, along with more recent divergences not well-associated with race. Pleistocene refugia may have existed in areas of high haplotypic diversity, as well as the Great Basin, Southwestern United States/northern Mexico, and the High Plains.


Assuntos
Evolução Biológica , Variação Genética , Pinus ponderosa/genética , Pinus/genética , Polimorfismo Genético/genética , Sequência de Bases , Conservação dos Recursos Naturais , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA de Plantas/química , DNA de Plantas/genética , Haplótipos , Repetições Minissatélites/genética , Noroeste dos Estados Unidos , Motivos de Nucleotídeos , Filogeografia , Análise de Sequência de DNA , Sudoeste dos Estados Unidos , Árvores
10.
Ecol Appl ; 22(2): 517-31, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22611851

RESUMO

Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years apart from more than 7000 forested plots in the eastern United States, we tested three hypotheses: phylogenetic diversity is substantially different from species richness as a measure of biodiversity; forest communities have undergone recent changes in phylogenetic diversity that differ by size class, region, and seed dispersal strategy; and these patterns are consistent with expected early effects of climate change. Specifically, the magnitude of diversity change across broad regions should be greater among seedlings than in trees, should be associated with latitude and elevation, and should be greater among species with high dispersal capacity. Our analyses demonstrated that phylogenetic diversity and species richness are decoupled at small and medium scales and are imperfectly associated at large scales. This suggests that it is appropriate to apply indicators of biodiversity change based on phylogenetic diversity, which account for evolutionary relationships among species and may better represent community functional diversity. Our results also detected broadscale patterns of forest biodiversity change that are consistent with expected early effects of climate change. First, the statistically significant increase over time in seedling diversity in the South suggests that conditions there have become more favorable for the reproduction and dispersal of a wider variety of species, whereas the significant decrease in northern seedling diversity indicates that northern conditions have become less favorable. Second, we found weak correlations between seedling diversity change and latitude in both zones, with stronger relationships apparent in some ecoregions. Finally, we detected broadscale seedling diversity increases among species with longer-distance dispersal capacity, even in the northern zone, where overall seedling diversity declined. The statistical power and geographic extent of such analyses will increase as data become available over larger areas and as plot measurements are repeated at regular intervals over a longer period of time.


Assuntos
Biodiversidade , Filogenia , Plântula/classificação , Plântula/fisiologia , Árvores/classificação , Árvores/fisiologia , Plântula/genética , Fatores de Tempo , Árvores/genética , Estados Unidos
11.
Landsc Ecol ; 21(4): 625-626, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-32214660
12.
Environ Manage ; 34(1): 62-74, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15156350

RESUMO

The Southeastern United States is a global center of freshwater biotic diversity, but much of the region's aquatic biodiversity is at risk from stream degradation. Nonpoint pollution sources are responsible for 70% of that degradation, and controlling nonpoint pollution from agriculture, urbanization, and silviculture is considered critical to maintaining water quality and aquatic biodiversity in the Southeast. We used an ecological risk assessment framework to develop vulnerability models that can help policymakers and natural resource managers understand the impact of land cover changes on water quality in North Carolina. Additionally, we determined which landscape characteristics are most closely associated with macroinvertebrate community tolerance of stream degradation, and therefore with lower-quality water. The results will allow managers and policymakers to weigh the risks of management and policy decisions to a given watershed or set of watersheds, including whether streamside buffer protection zones are ecologically effective in achieving water quality standards. Regression analyses revealed that landscape variables explained up to 56.3% of the variability in benthic macroinvertebrate index scores. The resulting vulnerability models indicate that North Carolina watersheds with less forest cover are at most risk for degraded water quality and steam habitat conditions. The importance of forest cover, at both the watershed and riparian zone scale, in predicting macrobenthic invertebrate community assemblage varies by geographic region of the state.


Assuntos
Invertebrados , Modelos Teóricos , Poluentes da Água/análise , Poluentes da Água/intoxicação , Abastecimento de Água , Animais , Meio Ambiente , Previsões , North Carolina , Formulação de Políticas , Dinâmica Populacional , Medição de Risco , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA