Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0296911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427679

RESUMO

Nepal's poultry industry has experienced remarkable growth in the last decade, but farm biosafety and biosecurity measures are often overlooked by farmers. As a result, farms often suffer from sporadic and regular outbreaks of many diseases, impacting production and creating public health challenges. Poor management practices, including overuse of antibiotics for prophylaxis and therapeutics, can enhance the spread of poultry diseases by propagating antimicrobial resistance (AMR) that is threatening poultry and human health. We assessed biosafety, biosecurity risks and AMR stewardship in sixteen poultry farms located in four districts: Ramechhap, Nuwakot, Sindhupalchowk, and Kavre. Risk assessment and AMR stewardship evaluation questionnaires were administered to formulate biosafety and biosecurity compliance matrix (BBCM). Risk assessment checklist assessed facility operations, personnel and standard operating procedures, water supply, cleaning and maintenance, rodent/pest control and record keeping. Oral and cloacal samples from the poultry were collected, pooled, and screened for eight poultry pathogens using Polymerase Chain Reaction (PCR) tests. Based on BBCM, we identified the highest BBCM score of 67% obtained by Sindhupalchowk farm 4 and the lowest of 12% by Kavre farm 3. Most of the farms (61.6%) followed general poultry farming practices, only half had clean and well-maintained farms. Lowest scores were obtained for personnel safety standard (42.4%) and rodent control (3.1%). At least one of the screened pathogens were detected in all farms. Mycoplasma gallisepticum was the most common pathogen detected in all but three farms, followed by Mycoplasma synoviae. More than half of the farmers considered AMR a threat, over 26% of them used antibiotics as a preventive measure and 81% did not consider withdrawal period for antibiotics prior to processing of their meat products. Additionally, antibiotics classified as "Watch" and "Restrict" by the WHO were frequently used by the farmers to treat bacterial infections in their farms.


Assuntos
Gestão de Antimicrobianos , Aves Domésticas , Animais , Humanos , Fazendas , Projetos Piloto , Contenção de Riscos Biológicos , Biosseguridade , Antibacterianos/uso terapêutico , Nepal
2.
Front Vet Sci ; 10: 1133823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303725

RESUMO

Introduction: Tuberculosis is an infectious disease caused by a group of acid-fast bacilli known as Mycobacterium tuberculosis complex (MTC), which has a major impact on humans. Transmission of MTC across the human-animal interface has been demonstrated by several studies. However, the reverse zoonotic transmission from humans to animals (zooanthroponosis) has often been neglected. Methods: In this study, we used Nanopore MinION and Illumina MiSeq approaches to sequence the whole genome of M. tuberculosis strains isolated from two deceased Asian elephants (Elephas maximus) and one human in Chitwan, Nepal. The evolutionary relationships and drug resistance capacity of these strains were assessed using the whole genome data generated by the stand-alone tool Tb-Profiler. Phylogenomic trees were also constructed using a non-synonymous SNP alignment of 2,596 bp, including 94 whole genome sequences representative of the previously described M. tuberculosis lineages from elephants worldwide (lineages 1 and 4) and from humans in Nepal (lineages 1, 2 and 3). Results and Discussion: The new genomes achieved an average coverage of 99.6%, with an average depth of 55.67x. These M. tuberculosis strains belong to lineage 1 (elephant DG), lineage 2 (elephant PK) and lineage 4 (human), and none of them were found to have drug-resistant variants. The elephant-derived isolates were evolutionarily closely related to human-derived isolates previously described in Nepal, both in lineages 1 and 2, providing additional support for zooanthroponosis or bidirectional transmission between humans and elephants. The human-derived isolate clustered together with other published human isolates from Argentina, Russia and the United Kingdom in the lineage 4 clade. This complex multi-pathogen, multi-host system is challenging and highlights the need for a One Health approach to tuberculosis prevention and control at human-animal interface, particularly in regions where human tuberculosis is highly endemic.

3.
PLoS One ; 18(3): e0270778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36857401

RESUMO

Campylobacter spp. is often underreported and underrated bacteria that present real health risks to both humans and animals, including non-human primates. It is a commensal microorganism of gastrointestinal tract known to cause gastroenteritis in humans. Commonly found in many wild animals including non-human primates (monkeys- Rhesus macaques) these pathogens are known to be a common cause of diarrhea in humans in many parts of developing and under developed countries. Rhesus macaques from the two holy sites in Kathmandu (Pashupati and Swoyambhu) were included in this cross-sectional study. Diarrheal samples of monkeys were analyzed to detect and characterize the pathogen using 16S rRNA-based PCR screening, followed by DNA sequencing and phylogenetic analysis. Out of a total 67 collected diarrheal samples, Campylobacter spp. were detected in the majority of the samples (n = 64; 96%). DNA sequences of the amplified PCR products were successfully obtained from 13 samples. Phylogenetic analysis identified Candidatus Campylobacter infans (n = 10, Kimura-2 parameter (K2P) pairwise distance values of 0.002287). Remaining three sequences might potentially belong to a novel Campylobacter species/sub-species- closely relating to known species of C. helviticus (K2P pairwise distance of 0.0267). Both Candidatus Campylobacter infans and C. helvitucus are known to infect humans and animals. Additionally, we also detected the bacteria in water and soil samples from the sites. Campylobacter spp. caused the 2018 diarrhea outbreak in Rhesus macaques in the Kathmandu valley. Campylobacter might be one of the important contributing pathogens in diarrheal outbreaks-both in humans and animals (monkeys) in Nepal. Due to close interactions of these animals with humans and other animals, One Health approach might be the most effective way to prevent and mitigate the threat posed by this pathogen.


Assuntos
Campylobacter , Diarreia , Animais , Macaca mulatta , Estudos Transversais , Filogenia , RNA Ribossômico 16S , Surtos de Doenças
4.
PLoS One ; 18(3): e0280688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36897867

RESUMO

Poultry (Gallus domesticus) farming plays an important role as an income generating enterprise in a developing country like Nepal, contributing more than 4% to the national Gross Domestic Product (GDP). Newcastle Disease (ND) is a major poultry disease affecting both commercial and backyard poultry production worldwide. There were more than 90 reported ND outbreaks in Nepal in 2018 with over 74,986 birds being affected. ND is responsible for over 7% of total poultry mortality in the country. Recent outbreaks of ND in 2021 affected many farms throughout Nepal and caused massive loss in poultry production. ND is caused by a single-stranded ribonucleic acid (RNA) virus that presents very similar clinical symptoms as Influenza A (commonly known as bird flu) adding much complexity to clinical disease identification and intervention. We conducted a nationwide ND and Influenza A (IA) prevalence study, collecting samples from representative commercial and backyard poultry farms from across the major poultry production hubs of Nepal. We used both serological and molecular assessments to determine disease exposure history and identification of strains of ND Virus (NDV). Of the 40 commercial farms tested, both NDV (n = 28, 70%) and IAV (n = 11, 27.5%) antibodies were detected in majority of the samples. In the backyard farms (n = 36), sero-prevalence of NDV and IAV were 17.5% (n = 7) and 7.5% (n = 3) respectively. Genotype II NDV was present in most of the commercial farms, which was likely due to live vaccine usage. We detected never reported Genotype I NDV in two backyard farm samples. Our investigation into 2021 ND outbreak implicated Genotype VII.2 NDV strain as the causative pathogen. Additionally, we developed a Tablet formulation of the thermostable I2-NDV vaccine (Ranigoldunga™) and assessed its efficacy on various (mixed) breeds of chicken (Gallus domesticus). Ranigoldunga™ demonstrated an overall efficacy >85% with a stability of 30 days at room temperature (25°C). The intraocularly administered vaccine was highly effective in preventing ND, including Genotype VII.2 NDV strain.


Assuntos
Influenza Humana , Doença de Newcastle , Doenças das Aves Domésticas , Animais , Humanos , Doença de Newcastle/prevenção & controle , Aves Domésticas , Nepal , Vírus da Doença de Newcastle/genética , Galinhas , Vacinas Atenuadas , Genótipo
5.
PLoS One ; 18(3): e0283664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996055

RESUMO

Understanding disease burden and transmission dynamics in resource-limited, low-income countries like Nepal are often challenging due to inadequate surveillance systems. These issues are exacerbated by limited access to diagnostic and research facilities throughout the country. Nepal has one of the highest COVID-19 case rates (915 cases per 100,000 people) in South Asia, with densely-populated Kathmandu experiencing the highest number of cases. Swiftly identifying case clusters (hotspots) and introducing effective intervention programs is crucial to mounting an effective containment strategy. The rapid identification of circulating SARS-CoV-2 variants can also provide important information on viral evolution and epidemiology. Genomic-based environmental surveillance can help in the early detection of outbreaks before clinical cases are recognized and identify viral micro-diversity that can be used for designing real-time risk-based interventions. This research aimed to develop a genomic-based environmental surveillance system by detecting and characterizing SARS-CoV-2 in sewage samples of Kathmandu using portable next-generation DNA sequencing devices. Out of 22 sites in the Kathmandu Valley from June to August 2020, sewage samples from 16 (80%) sites had detectable SARS-CoV-2. A heatmap was created to visualize the presence of SARS-CoV-2 infection in the community based on viral load intensity and corresponding geospatial data. Further, 47 mutations were observed in the SARS-CoV-2 genome. Some detected mutations (n = 9, 22%) were novel at the time of data analysis and yet to be reported in the global database, with one indicating a frameshift deletion in the spike gene. SNP analysis revealed possibility of assessing circulating major/minor variant diversity on environmental samples based on key mutations. Our study demonstrated the feasibility of rapidly obtaining vital information on community transmission and disease dynamics of SARS-CoV-2 using genomic-based environmental surveillance.


Assuntos
COVID-19 , Esgotos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Genômica
6.
Plant Pathol J ; 35(4): 287-300, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31481852

RESUMO

Spot blotch caused by Bipolaris sorokiniana has spread to more than 9 million ha of wheat in the warm, humid areas of the Eastern Gangetic Plains (EGP) of South Asia and is a disease of major concern in other similar wheat growing regions worldwide. Differential lignin content in resistant and susceptible genotypes and its association with free radicals such as hydrogen peroxide (H2O2), superoxide (O2 -) and hydroxyl radical (OH-) were studied after inoculation under field conditions for two consecutive years. H2O2 significantly influenced lignin content in flag leaves, whereas there was a negative correlation among lignin and H2O2 to the Area Under Disease Progress Curve (AUDPC). The production of H2O2 was higher in the resistant genotypes than susceptible ones. The O2 - and OH- positively correlated with AUDPC but negatively with lignin content. This study illustrates that H2O2 has a vital role in prompting lignification and thereby resistance to spot blotch in wheat. We used cluster analysis to separate the resistant and susceptible genotypes by phenotypic and biochemical traits. H2O2 associated lignin production significantly reduced the number of appressoria and penetration pegs. We visualized the effect of lignin in disease resistance using differential histochemical staining of tissue from resistant and susceptible genotypes, which shows the variable accumulation of hydrogen peroxide and lignin around penetration sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA