Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136681

RESUMO

Daptomycin (DAP) represents an interesting alternative to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. Different mechanisms of DAP resistance have been described; however, in vivo-acquired resistance is uncharacterized. This study described the phenotypic and genotypic evolution of MRSA strains that became resistant to DAP in two unrelated patients with bacteremia under DAP treatment, in two hospitals in the South of France. DAP MICs were determined using broth microdilution method on the pairs of isogenic (DAP-S/DAP-R) S. aureus isolated from bloodstream cultures. Whole genome sequencing was carried out using Illumina MiSeq Sequencing system. The two cases revealed DAP-R acquisition by MRSA strains within three weeks in patients treated by DAP. The isolates belonged to the widespread ST5 (patient A) and ST8 (patient B) lineages and were of spa-type t777 and t622, respectively. SNP analysis comparing each DAP-S/DAP-R pair confirmed that the isolates were isogenic. The causative mutations were identified in MprF (Multiple peptide resistance Factor) protein: L826F (Patient A) and S295L (Patient B), and in Cls protein: R228H (Patient B). These proteins encoded both proteins of the lipid biosynthetic enzymes. The resistance to DAP is particularly poorly described whereas DAP is highly prescribed to treat MRSA. Our study highlights the non-systematic cross-resistance between DAP and glycopeptides and the importance of monitoring DAP MIC in persistent MRSA bacteremia.

2.
J Infect Dis ; 228(12): 1800-1804, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37343134

RESUMO

BACKGROUND: The transition from colonization to invasion is critical in diabetic foot ulcer (DFU). Staphylococcus aureus can colonize DFU, or invade the underlying tissues, causing serious infections. The ROSA-like prophage has previously been implicated in strain colonization characteristics of S aureus isolates in uninfected ulcers. METHODS: In this study, we investigated this prophage in the S aureus-colonizing strain using an in vitro chronic wound medium mimicking the chronic wound environment. RESULTS: Chronic wound medium reduced bacterial growth and increased biofilm formation and virulence in a zebrafish model. CONCLUSIONS: The ROSA-like prophage promoted intracellular survival of S aureus-colonizing strain in macrophages, keratinocytes, and osteoblasts.


Assuntos
Pé Diabético , Rosa , Infecções Estafilocócicas , Animais , Staphylococcus aureus , Virulência , Prófagos/genética , Peixe-Zebra , Pé Diabético/microbiologia , Infecções Estafilocócicas/microbiologia , Biofilmes
3.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675063

RESUMO

Coagulase-negative staphylococci (CoNS) and especially Staphylococcus epidermidis are responsible for health care infections, notably in the presence of foreign material (e.g., venous or central-line catheters). Catheter-related bacteremia (CRB) increases health care costs and mortality. The aim of our study was to evaluate the impact of 15 days of antibiotic exposure (ceftobiprole, daptomycin, linezolid and vancomycin) at sub-inhibitory concentration on the resistance, fitness and genome evolution of 36 clinical strains of S. epidermidis responsible for CRB. Resistance was evaluated by antibiogram, the ability to adapt metabolism by the Biofilm Ring test® and the in vivo nematode virulence model. The impact of antibiotic exposure was determined by whole-genome sequencing (WGS) and biofilm formation experiments. We observed that S. epidermidis strains presented a wide variety of virulence potential and biofilm formation. After antibiotic exposure, S. epidermidis strains adapted their fitness with an increase in biofilm formation. Antibiotic exposure also affected genes involved in resistance and was responsible for cross-resistance between vancomycin, daptomycin and ceftobiprole. Our data confirmed that antibiotic exposure modified bacterial pathogenicity and the emergence of resistant bacteria.


Assuntos
Bacteriemia , Daptomicina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Vancomicina/farmacologia , Daptomicina/farmacologia , Staphylococcus epidermidis , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Catéteres/microbiologia , Testes de Sensibilidade Microbiana , Biofilmes
4.
J Antimicrob Chemother ; 78(2): 540-545, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36575632

RESUMO

BACKGROUND: Diabetic foot infections (DFIs) represent a public health problem because of their frequency and the severity of their consequences, i.e. amputation and mortality. Polymicrobial biofilms on the skin surface of these ulcers complicate wound healing. Few in vitro models exist to study the antibiotics activity in this context. OBJECTIVES: This study evaluated the in vitro activity of antibiotics against the two main bacteria isolated in DFI, Staphylococcus aureus and Pseudomonas aeruginosa, using a dynamic system (BioFlux™ 200) and a chronic wound-like medium (CWM) that mimic the foot ulcer environment. METHODS: Reference strains and two pairs of clinical S. aureus and P. aeruginosa isolated together from a DFI were cultivated in brain heart infusion and CWM media during 72 h at 37°C, alone and combined in the BioFlux™ 200 system. Antibiotic activity was evaluated after a mechanical debridement. The activities were measured by the reduction of biofilm percentage of bacteria in the microfluidic system using microscopy. RESULTS: Daptomycin for S. aureus and ceftazidime for P. aeruginosa showed excellent activity to reduce biofilm biomass, whereas linezolid action was more mitigated and dalbavancin was ineffective. Ceftazidime + daptomycin presented the most potent in vitro activity on a mixed biofilm. CONCLUSIONS: The combination of CWM and the BioFlux™ microfluidic system represents a valuable tool to screen the potential antimicrobial activity of antibiotics under conditions mimicking those encountered in DFI. It could help clinicians in their management of chronic wounds.


Assuntos
Daptomicina , Diabetes Mellitus , Pé Diabético , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus , Pseudomonas aeruginosa , Pé Diabético/microbiologia , Ceftazidima , Microfluídica , Infecções Estafilocócicas/microbiologia , Biofilmes
5.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555117

RESUMO

Staphylococcus pettenkoferi is a recently described coagulase-negative Staphylococcus identified in human diseases, especially in infections of foot ulcers in patients living with diabetes mellitus. To date, its pathogenicity remains underexplored. In this study, whole-genome analysis was performed on a collection of 29 S. pettenkoferi clinical strains isolated from bloodstream and diabetic foot infections with regard to their phylogenetic relationships and comprehensive analysis of their resistome and virulome. Their virulence was explored by their ability to form biofilm, their growth kinetics and in an in vivo zebrafish embryo infection model. Our results identified two distinct clades (I and II) and two subclades (I-a and I-b) with notable genomic differences. All strains had a slow bacterial growth. Three profiles of biofilm formation were noted, with 89.7% of isolates able to produce biofilm and harbouring a high content of biofilm-encoding genes. Two virulence profiles were also observed in the zebrafish model irrespective of the strains' origin or biofilm profile. Therefore, this study brings new insights in S. pettenkoferi pathogenicity.


Assuntos
Doenças Transmissíveis , Diabetes Mellitus , Pé Diabético , Infecções Estafilocócicas , Humanos , Animais , Virulência/genética , Pé Diabético/microbiologia , Peixe-Zebra , Infecções Estafilocócicas/microbiologia , Filogenia , Staphylococcus/genética , Biofilmes , Antibacterianos
6.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232569

RESUMO

In diabetic foot ulcers (DFUs), biofilm formation is a major challenge that promotes wound chronicity and delays healing. Antiseptics have been proposed to combat biofilms in the management of DFUs. However, there is limited evidence on the activity of these agents against biofilms, and there are questions as to which agents have the best efficiency. Here, we evaluated the antibiofilm activity of sodium hypochlorite, polyvinylpyrrolidoneIodine (PVPI), polyhexamethylenebiguanide (PHMB) and octenidine against Pseudomonas aeruginosa strains using static and dynamic systems in a chronic-wound-like medium (CWM) that mimics the chronic wound environment. Using Antibiofilmogram®, a technology assessing the ability of antiseptics to reduce the initial phase of biofilm formation, we observed the significant activity of antiseptics against biofilm formation by P. aeruginosa (at 1:40 to 1:8 dilutions). Moreover, 1:100 to 1:3 dilutions of the different antiseptics reduced mature biofilms formed after 72 h by 10-log, although higher concentrations were needed in CWM (1:40 to 1:2). Finally, in the BioFlux200TM model, after biofilm debridement, sodium hypochlorite and PHMB were the most effective antiseptics. In conclusion, our study showed that among the four antiseptics tested, sodium hypochlorite demonstrated the best antibiofilm activity against P. aeruginosa biofilms and represents an alternative in the management of DFUs.


Assuntos
Anti-Infecciosos Locais , Diabetes Mellitus , Pé Diabético , Antibacterianos , Anti-Infecciosos Locais/farmacologia , Biofilmes , Pé Diabético/tratamento farmacológico , Humanos , Pseudomonas aeruginosa , Hipoclorito de Sódio/farmacologia
7.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142675

RESUMO

Biofilm on the skin surface of chronic wounds is an important step that involves difficulties in wound healing. The polymicrobial nature inside this pathogenic biofilm is key to understanding the chronicity of the lesion. Few in vitro models have been developed to study bacterial interactions inside this chronic wound. We evaluated the biofilm formation and the evolution of bacteria released from this biofilm on the two main bacteria isolated in this condition, Staphylococcus aureus and Pseudomonas aeruginosa, using a dynamic system (BioFlux™ 200) and a chronic wound-like medium (CWM) that mimics the chronic wound environment. We observed that all species constituted a faster biofilm in the CWM compared to a traditional culture medium (p < 0.01). The percentages of biofilm formation were significantly higher in the mixed biofilm compared to those determined for the bacterial species alone (p < 0.01). Biofilm organization was a non-random structure where S. aureus aggregates were located close to the wound surface, whereas P. aeruginosa was located deeper in the wound bed. Planktonic biofilm-detached bacteria showed decreased growth, overexpression of genes encoding biofilm formation, and an increase in the mature biofilm biomass formed. Our data confirmed the impact of the chronic wound environment on biofilm formation and on bacterial lifecycle inside the biofilm.


Assuntos
Pseudomonas aeruginosa , Infecções Estafilocócicas , Biofilmes , Humanos , Staphylococcus aureus , Cicatrização
8.
Microorganisms ; 10(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893558

RESUMO

Chronic wounds, defined by their resistance to care after four weeks, are a major concern, affecting millions of patients every year. They can be divided into three types of lesions: diabetic foot ulcers (DFU), pressure ulcers (PU), and venous/arterial ulcers. Once established, the classical treatment for chronic wounds includes tissue debridement at regular intervals to decrease biofilm mass constituted by microorganisms physiologically colonizing the wound. This particular niche hosts a dynamic bacterial population constituting the bed of interaction between the various microorganisms. The temporal reshuffle of biofilm relies on an organized architecture. Microbial community turnover is mainly associated with debridement (allowing transitioning from one major representant to another), but also with microbial competition and/or collaboration within wounds. This complex network of species and interactions has the potential, through diversity in antagonist and/or synergistic crosstalk, to accelerate, delay, or worsen wound healing. Understanding these interactions between microorganisms encountered in this clinical situation is essential to improve the management of chronic wounds.

9.
Front Microbiol ; 13: 705479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464992

RESUMO

Biofilm on the skin surface of chronic wounds is an important factor in the pathology, inhibiting wound healing. The polymicrobial nature of these infected wounds and bacterial interactions inside this pathogenic biofilm are the keys for understanding chronic infection. The aim of our work was to develop an innovative in vitro medium that closely mimics the chronic wound emphasizing the microbiological, cellular, and inflammatory environment of chronic wounds but also focusing on the pH found at the wound level. This new medium, called chronic wound medium (CWM), will thus facilitate the study of pathogenic biofilm organization. Clinical Staphylococcus aureus and Pseudomonas aeruginosa strains coisolated from diabetic foot infection were collected and cultivated in this new medium for 24 h in monoculture and coculture. Bacterial growth (growth curves), presence of small colony variant (SCV), biofilm formation (BioFilm Ring Test® assay, biofilm biomass quantification), and virulence (survival curve in a Caenorhabditis elegans model) were evaluated. After 24 h in the in vitro conditions, we observed that P. aeruginosa growth was not affected, compared with a control bacterial medium, whereas for S. aureus, the stationary phase was reduced by two logs. Interestingly, S. aureus growth increased when cocultured with P. aeruginosa in CWM. In coculture with P. aeruginosa, SCV forms of S. aureus were detected. Biofilm studies showed that bacteria, alone and in combination, formed biofilm faster (as soon as 3 h) than the bacteria exposed in a control medium (as soon as 5 h). The virulence of all strains decreased in the nematode model when cultivated in our new in vitro medium. Taken together, our data confirmed the impact of the chronic wound environment on biofilm formation and bacteria virulence. They indicated that P. aeruginosa and S. aureus cooperated in coinfected wounds. Therefore, this in vitro model provides a new tool for bacterial cooperation investigation and polymicrobial biofilm formation.

10.
Front Microbiol ; 12: 750489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721354

RESUMO

Cystic fibrosis (CF) is a genetic disease with lung abnormalities making patients particularly predisposed to pulmonary infections. Staphylococcus aureus is the most frequently identified pathogen, and multidrug-resistant strains (MRSA, methicillin-resistant S. aureus) have been associated with more severe lung dysfunction leading to eradication recommendations. Diverse bacterial traits and adaptive skills, including biofilm formation, may, however, make antimicrobial therapy challenging. In this context, we compared the ability of a collection of genotyped MRSA isolates from CF patients to form biofilm with and without antibiotics (ceftaroline, ceftobiprole, linezolid, trimethoprim, and rifampicin). Our study used standardized approaches not previously applied to CF MRSA, the BioFilm Ring test® (BRT®), the Antibiofilmogram®, and the BioFlux™ 200 system which were adapted for use with the artificial sputum medium (ASM) mimicking conditions more relevant to the CF lung. We included 63 strains of 10 multilocus sequence types (STs) isolated from 35 CF patients, 16 of whom had chronic colonization. The BRT® showed that 27% of the strains isolated in 37% of the patients were strong biofilm producers. The Antibiofilmogram® performed on these strains showed that broad-spectrum cephalosporins had the lowest minimum biofilm inhibitory concentrations (bMIC) on a majority of strains. A focus on four chronically colonized patients with inclusion of successively isolated strains showed that ceftaroline, ceftobiprole, and/or linezolid bMICs may remain below the resistance thresholds over time. Studying the dynamics of biofilm formation by strains isolated 3years apart in one of these patients using BioFlux™ 200 showed that inhibition of biofilm formation was observed for up to 36h of exposure to bMIC and ceftaroline and ceftobiprole had a significantly greater effect than linezolid. This study has brought new insights into the behavior of CF MRSA which has been little studied for its ability to form biofilm. Biofilm formation is a common characteristic of prevalent MRSA clones in CF. Early biofilm formation was strain-dependent, even within a sample, and not only observed during chronic colonization. Ceftaroline and ceftobiprole showed a remarkable activity with a long-lasting inhibitory effect on biofilm formation and a conserved activity on certain strains adapted to the CF lung environment after years of colonization.

11.
Toxins (Basel) ; 13(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34678970

RESUMO

Staphylococcus aureus is a clinically important pathogen that causes a wide range of human infections, from minor skin infections to severe tissue infection and sepsis. S. aureus has a high level of antibiotic resistance and is a common cause of infections in hospitals and the community. The rising prevalence of community-acquired methicillin-resistant S. aureus (CA-MRSA), combined with the important severity of S. aureus infections in general, has resulted in the frequent use of anti-staphylococcal antibiotics, leading to increasing resistance rates. Antibiotic-resistant S. aureus continues to be a major health concern, necessitating the development of novel therapeutic strategies. S. aureus uses a wide range of virulence factors, such as toxins, to develop an infection in the host. Recently, anti-virulence treatments that directly or indirectly neutralize S. aureus toxins have showed promise. In this review, we provide an update on toxin pathogenic characteristics, as well as anti-toxin therapeutical strategies.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Toxinas Biológicas/metabolismo , Virulência/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/metabolismo
12.
Diagnostics (Basel) ; 11(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34679444

RESUMO

The polymicrobial nature of biofilms and bacterial interactions inside chronic wounds are keys for the understanding of bacterial cooperation. The aim of this present study was to develop a technique to study and visualize biofilm in live imaging under flow conditions (Bioflux™ 200, Fluxion Biosciences). The BiofluxTM system was adapted using an in vitro chronic wound-like medium (CWM) that mimics the environment encountered in ulcers. Two reference strains of Staphylococcus aureus (Newman) and Pseudomonas aeruginosa (PAO1) were injected in the BiofluxTM during 24 h to 72 h in mono and coculture (ratio 1:1, bacteria added simultaneously) in the CWM vs. a control medium (BHI). The quantification of biofilm formation at each time was evaluated by inverted microscopy. After 72 h, different antibiotics (ceftazidime, imipenem, linezolid, oxacillin and vancomycin) at 1x MIC, 10x MIC and 100x MIC were administrated to the system after an automatic increase of the flow that mimicked a debridement of the wound surface. Biofilm studies highlighted that the two species, alone or associated, constituted a faster and thicker biofilm in the CWM compared to the BHI medium. The effect of antibiotics on mature or "debrided" biofilm indicated that some of the most clinically used antibiotic such as vancomycin or imipenem were not able to disrupt and reduce the biofilm biomass. The use of a life cell imaging with an in vitro CWM represents a promising tool to study bacterial biofilm and investigate microbial cooperation in a chronic wound context.

13.
Front Microbiol ; 12: 747618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675910

RESUMO

Diabetic foot ulcers (DFU) represent a growing public health problem. The emergence of multidrug-resistant (MDR) bacteria is a complication due to the difficulties in distinguishing between infection and colonization in DFU. Another problem lies in biofilm formation on the skin surface of DFU. Biofilm is an important pathophysiology step in DFU and may contribute to healing delays. Both MDR bacteria and biofilm producing microorganism create hostile conditions to antibiotic action that lead to chronicity of the wound, followed by infection and, in the worst scenario, lower limb amputation. In this context, alternative approaches to antibiotics for the management of DFU would be very welcome. In this review, we discuss current knowledge on biofilm in DFU and we focus on some new alternative solutions for the management of these wounds, such as antibiofilm approaches that could prevent the establishment of microbial biofilms and wound chronicity. These innovative therapeutic strategies could replace or complement the classical strategy for the management of DFU to improve the healing process.

14.
Toxins (Basel) ; 13(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810194

RESUMO

Staphylococcus aureus is the most prevalent pathogen isolated from diabetic foot infections (DFIs). The purpose of this study was to evaluate its behavior in an in vitro model mimicking the conditions encountered in DFI. Four clinical S. aureus strains were cultivated for 16 weeks in a specific environment based on the wound-like medium biofilm model. The adaptation of isolates was evaluated as follows: by Caenorhabditis elegans model (to evaluate virulence); by quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) (to evaluate expression of the main virulence genes); and by Biofilm Ring test® (to assess the biofilm formation). After 16 weeks, the four S. aureus had adapted their metabolism, with the development of small colony variants and the loss of ß-hemolysin expression. The in vivo nematode model suggested a decrease of virulence, confirmed by qRT-PCRs, showing a significant decrease of expression of the main staphylococcal virulence genes tested, notably the toxin-encoding genes. An increased expression of genes involved in adhesion and biofilm was noted. Our data based on an in vitro model confirm the impact of environment on the adaptation switch of S. aureus to prolonged stress environmental conditions. These results contribute to explore and characterize the virulence of S. aureus in chronic wounds.


Assuntos
Biofilmes/crescimento & desenvolvimento , Pé Diabético/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Infecção dos Ferimentos/microbiologia , Pé Diabético/imunologia , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica , Humanos , Evasão da Resposta Imune , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Fatores de Tempo , Virulência , Infecção dos Ferimentos/imunologia
15.
Microorganisms ; 8(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066595

RESUMO

Foot infections are the main disabling complication in patients with diabetes mellitus. These infections can lead to lower-limb amputation, increasing mortality and decreasing the quality of life. Biofilm formation is an important pathophysiology step in diabetic foot ulcers (DFU)-it plays a main role in the disease progression and chronicity of the lesion, the development of antibiotic resistance, and makes wound healing difficult to treat. The main problem is the difficulty in distinguishing between infection and colonization in DFU. The bacteria present in DFU are organized into functionally equivalent pathogroups that allow for close interactions between the bacteria within the biofilm. Consequently, some bacterial species that alone would be considered non-pathogenic, or incapable of maintaining a chronic infection, could co-aggregate symbiotically in a pathogenic biofilm and act synergistically to cause a chronic infection. In this review, we discuss current knowledge on biofilm formation, its presence in DFU, how the diabetic environment affects biofilm formation and its regulation, and the clinical implications.

16.
Infect Immun ; 88(12)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32989036

RESUMO

Escherichia coli O25b:H4 sequence type 131 (ST131), which is resistant to fluoroquinolones and which is a producer of CTX-M-15, is globally one of the major extraintestinal pathogenic E. coli (ExPEC) lineages. Phylogenetic analyses showed that multidrug-resistant ST131 strains belong to clade C, which recently emerged from clade B by stepwise evolution. It has been hypothesized that features other than multidrug resistance could contribute to this dissemination since other major global ExPEC lineages (ST73 and ST95) are mostly antibiotic susceptible. To test this hypothesis, we compared early biofilm production, presence of ExPEC virulence factors (VFs), and in vivo virulence in a mouse sepsis model in 19 and 20 epidemiologically relevant strains of clades B and C, respectively. Clade B strains were significantly earlier biofilm producers (P < 0.001), carriers of more VFs (P = 4e-07), and faster killers of mice (P = 2e-10) than clade C strains. Gene inactivation experiments showed that the H30-fimB and ibeART genes were associated with in vivo virulence. Competition assays in sepsis, gut colonization, and urinary tract infection models between the most anciently diverged strain (B1 subclade), one C1 subclade strain, and a B4 subclade recombining strain harboring some clade C-specific genetic events showed that the B1 strain always outcompeted the C1 strain, whereas the B4 strain outcompeted the C1 strain, depending on the mouse niches. All these findings strongly suggest that clade C evolution includes a progressive loss of virulence involving multiple genes, possibly enhancing overall strain fitness by avoiding severe infections, even if it comes at the cost of a lower colonization ability.


Assuntos
Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Sepse/microbiologia , Fatores de Virulência/genética , Virulência/genética , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/patogenicidade , Genótipo , Integrases/genética , Integrases/metabolismo , Estimativa de Kaplan-Meier , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fenótipo , Infecções Urinárias/microbiologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA