Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38629316

RESUMO

Filter-feeding demosponges are modular organisms that consist of modules each with one water-exit osculum. Once a mature module has been formed, the weight-specific filtration and respiration rates do not change. Sponge modules only grow to a certain size and for a sponge to increase in size, new modules must be formed. However, the growth characteristics of a small single-osculum module sponge are fundamentally different from those of multi-modular sponges, and a theoretically derived volume-specific filtration rate scales as F/V=V-1/3, indicating a decrease with increasing total module volume (V, cm3). Here, we studied filtration rate (F, l h-1), respiration rate (R, ml O2 h-1), volume-specific (F/V) and weight-specific (F/W) filtration rates, and the ratios F/R and F/W along with growth rates of small single-osculum demosponge Halichondria panicea explants of various sizes exposed to various concentrations of algal cells. The following relationships were found: F/V=7.08V-0.24, F=a1W1.05, and R=a2W0.68 where W is the dry weight (mg). The F/R and F/W ratios were constant and essentially independent of W, and other data indicate exponential growth. It is concluded that the experimental data support the theoretical F/V∝V-1/3.


Assuntos
Poríferos , Água , Animais , Respiração , Filtração , Taxa Respiratória
2.
Artigo em Inglês | MEDLINE | ID: mdl-36767730

RESUMO

The importance of wearing a facemask during a pandemic has been widely discussed, and a number of studies have been undertaken to provide evidence of a reduced infectious virus dose because of wearing facemasks. Here, one aspect that has received little attention is the fraction of breathing flow that is not filtered because it passes as leak flow between the mask and face. Its reduction would be beneficial in reducing the dose response. The results of the present study include the filter material pressure loss parameters, pressure distributions under masks, and the fraction of breathing flow leaked versus steady breathing flow in the range of 5 to 30 L min-1, for two commonly used facemasks mounted on mannequins, in the usual 'casual' way and in a 'tight' way by means of three different fitters placed over the mask to improve the seals. For the 'casual' mount, leaks were high: 83% to 99% for both masks at both exhalation and inhalation flows. For the 'tight' mount with different fitters, the masks showed different lower levels in the range of 18 to 66% of leakage, which, for exhalation, were nearly independent of flow rate, while for inhalation, were decreasing with increasing rates of respiration flows, probably because suction improved the sealing. In practice, masks are worn in a 'casual' mount, which would imply that nearly all contagious viruses found in aerosols small enough to follow air streams would be exhaled to and inhaled from the ambient air.


Assuntos
Máscaras , Respiração , Aerossóis , Administração por Inalação , Nebulizadores e Vaporizadores
4.
Phys Med Biol ; 66(4): 045024, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33348325

RESUMO

Elastography provides significant information on staging of fibrosis in patients with liver disease and may be of some value in assessing steatosis. However, there remain questions as to the role of steatosis and fibrosis as cofactors influencing the viscoelastic measurements of liver tissues, particularly shear wave speed (SWS) and shear wave attenuation (SWA). In this study, by employing the theory of composite elastic media as well as two independent experimental measurements on oil-in-gelatin phantoms and also finite element simulations, it is consistently shown that fat and fibrosis jointly influence the SWS and SWA measurements. At a constant level of fat, fibrosis stages can influence the SWA by factors of 2-4. Moreover, the rate of increase in SWA with increasing fat is strongly influenced by the stages of fibrosis; softer background cases (low fibrosis stages) have higher rate of SWA increase with fat than those with stiffer moduli (higher fibrosis stages). Meanwhile, SWS results are influenced by the presence of fat, however the degree of variability is more subtle. The results indicate the importance of jointly considering fat and fibrosis as contributors to SWS and SWA measurements in complex liver tissues and in the design and interpretation of clinical trials.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Fígado Gorduroso/diagnóstico por imagem , Fígado Gorduroso/fisiopatologia , Imagens de Fantasmas , Fenômenos Biomecânicos , Óleo de Rícino , Fibrose , Gelatina , Humanos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/fisiopatologia , Prognóstico , Viscosidade
5.
Phys Rev Lett ; 124(23): 230501, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603170

RESUMO

Analog quantum simulation is widely considered a step on the path to fault tolerant quantum computation. With current noisy hardware, the accuracy of an analog simulator will degrade after just a few time steps, especially when simulating complex systems likely to exhibit quantum chaos. Here we describe a quantum simulator based on the combined electron-nuclear spins of individual Cs atoms, and its use to run high fidelity simulations of three different model Hamiltonians for >100 time steps. While not scalable to exponentially large Hilbert spaces, it provides the accuracy and programmability required to explore the interplay between dynamics, imperfections, and accuracy in quantum simulation.

6.
Phys Rev Lett ; 124(11): 110503, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242733

RESUMO

We study a method to simulate quantum many-body dynamics of spin ensembles using measurement-based feedback. By performing a weak collective measurement on a large ensemble of two-level quantum systems and applying global rotations conditioned on the measurement outcome, one can simulate the dynamics of a mean-field quantum kicked top, a standard paradigm of quantum chaos. We analytically show that there exists a regime in which individual quantum trajectories adequately recover the classical limit, and show the transition between noisy quantum dynamics to full deterministic chaos described by classical Lyapunov exponents. We also analyze the effects of decoherence, and show that the proposed scheme represents a robust method to explore the emergence of chaos from complex quantum dynamics in a realistic experimental platform based on an atom-light interface.

7.
J R Soc Interface ; 16(150): 20180630, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958143

RESUMO

Leuconoid sponges are filter-feeders with a complex system of branching inhalant and exhalant canals leading to and from the close-packed choanocyte chambers. Each of these choanocyte chambers holds many choanocytes that act as pumping units delivering the relatively high pressure rise needed to overcome the system pressure losses in canals and constrictions. Here, we test the hypothesis that, in order to deliver the high pressures observed, each choanocyte operates as a leaky, positive displacement-type pump owing to the interaction between its beating flagellar vane and the collar, open at the base for inflow but sealed above. The leaking backflow is caused by small gaps between the vaned flagellum and the collar. The choanocyte pumps act in parallel, each delivering the same high pressure, because low-pressure and high-pressure zones in the choanocyte chamber are separated by a seal (secondary reticulum). A simple analytical model is derived for the pump characteristic, and by imposing an estimated system characteristic we obtain the back-pressure characteristic that shows good agreement with available experimental data. Computational fluid dynamics is used to verify a simple model for the dependence of leak flow through gaps in a conceptual collar-vane-flagellum system and then applied to models of a choanocyte tailored to the parameters of the freshwater demosponge Spongilla lacustris to study its flows in detail. It is found that both the impermeable glycocalyx mesh covering the upper part of the collar and the secondary reticulum are indispensable features for the choanocyte pump to deliver the observed high pressures. Finally, the mechanical pump power expended by the beating flagellum is compared with the useful (reversible) pumping power received by the water flow to arrive at a typical mechanical pump efficiency of about 70%.


Assuntos
Flagelos/fisiologia , Hidrodinâmica , Modelos Biológicos , Poríferos/anatomia & histologia , Poríferos/fisiologia , Animais
8.
J R Soc Interface ; 16(150): 20180478, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958164

RESUMO

Choanoflagellates are unicellular eukaryotes that are ubiquitous in aquatic habitats. They have a single flagellum that creates a flow toward a collar filter composed of filter strands that extend from the cell. In one common group, the loricate choanoflagellates, the cell is suspended in an elaborate basket-like structure, the lorica, the function of which remains unknown. Here, we use Computational Fluid Dynamics to explore the possible hydrodynamic function of the lorica. We use the choanoflagellate Diaphaoneca grandis as a model organism. It has been hypothesized that the function of the lorica is to prevent refiltration (flow recirculation) and to increase the drag and, hence, increase the feeding rate and reduce the swimming speed. We find no support for these hypotheses. On the contrary, motile prey are encountered at a much lower rate by the loricate organism. The presence of the lorica does not affect the average swimming speed, but it suppresses the lateral motion and rotation of the cell. Without the lorica, the cell jiggles from side to side while swimming. The unsteady flow generated by the beating flagellum causes reversed flow through the collar filter that may wash away captured prey while it is being transported to the cell body for engulfment. The lorica substantially decreases such flow, hence it potentially increases the capture efficiency. This may be the main adaptive value of the lorica.


Assuntos
Coanoflagelados , Hidrodinâmica , Modelos Biológicos , Movimento/fisiologia , Coanoflagelados/fisiologia , Coanoflagelados/ultraestrutura
9.
Forensic Sci Int Genet ; 37: 6-12, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30071494

RESUMO

We used a Poisson-gamma model to analyse the allele coverage of autosomal short tandem repeat (STR) systems obtained by massively parallel sequencing (MPS). The Poisson-gamma coverage model was created using the peak height models from capillary electrophoresis (CE) based detection of PCR products as a starting point. The CE models were modified to account for the differences between CE and MPS signals by accounting for the large marker imbalances seen for MPS data and by using the Poisson-gamma distribution instead of the normal, log-normal, or gamma distributions that were applied for CE data. We took two approaches to estimate the marker imbalance parameters by (1) using a work-flow data base, and (2) using the results of replicate investigations of the samples. The Poisson-gamma model was used to estimate the rate of drop-outs of (1) single contributor dilution series experiments and (2) the minor contributor in two-person mixture samples. We examined the predictive capabilities of the model by comparing the observed and expected Brier scores of each sample. We derived the expected Brier scores and their variances to create asymptotic confidence intervals of the Brier scores. We found that the Poisson-gamma model performed well when using the work-flow data base, but that the replicate approach is not necessarily a viable option.


Assuntos
Alelos , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Modelos Estatísticos , Análise de Sequência de DNA , Impressões Digitais de DNA , Humanos
10.
J Exp Biol ; 221(Pt 2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29191859

RESUMO

Copepods can respond to predators by powerful escape jumps that in some surface-dwelling forms may propel the copepod out of the water. We studied the kinematics and energetics of submerged and out-of-water jumps of two neustonic pontellid copepods, Anomalocera patersoni and Pontella mediterranea, and one pelagic calanoid copepod, Calanus helgolandicus (euxinus). We show that jumping out of the water does not happen just by inertia gained during the copepod's acceleration underwater, but also requires the force generated by the thoracic limbs when breaking through the water's surface to overcome surface tension, drag and gravity. The timing of this appears to be necessary for success. At the moment of breaking the water interface, the instantaneous velocity of the two pontellids reached 125 cm s-1, while their maximum underwater speed (115 cm s-1) was close to that of similarly sized C. helgolandicus (106 cm s-1). The average specific power produced by the two pontellids during out-of-water jumps (1700-3300 W kg-1 muscle mass) was close to that during submerged jumps (900-1600 W kg-1 muscle mass) and, in turn, similar to that produced during submerged jumps of C. helgolandicus (1300 W kg-1 muscle mass). The pontellids may shake off water adhering to their body by repeated strokes of the limbs during flight, which leads to a slight acceleration in the air. Our observations suggest that out-of-water jumps of pontellids are not dependent on any exceptional ability to perform this behavior but have the same energetic cost and are based on the same kinematic patterns and contractive capabilities of muscles as those of copepods swimming submerged.


Assuntos
Copépodes/fisiologia , Reação de Fuga/fisiologia , Animais , Fenômenos Biomecânicos , Hidrodinâmica , Tensão Superficial , Natação , Zooplâncton/fisiologia
11.
Phys Rev Lett ; 114(24): 240401, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26196968

RESUMO

Unitary transformations are the most general input-output maps available in closed quantum systems. Good control protocols have been developed for qubits, but questions remain about the use of optimal control theory to design unitary maps in high-dimensional Hilbert spaces, and about the feasibility of their robust implementation in the laboratory. Here we design and implement unitary maps in a 16-dimensional Hilbert space associated with the 6S(1/2) ground state of (133)Cs, achieving fidelities >0.98 with built-in robustness to static and dynamic perturbations. Our work has relevance for quantum information processing and provides a template for similar advances on other physical platforms.

12.
Phys Rev Lett ; 111(17): 170502, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24206469

RESUMO

We implement arbitrary maps between pure states in the 16-dimensional Hilbert space associated with the ground electronic manifold of ^{133}Cs. This is accomplished by driving atoms with phase modulated radio-frequency and microwave fields, using modulation waveforms found via numerical optimization and designed to work robustly in the presence of imperfections. We evaluate the performance of a sample of randomly chosen state maps by randomized benchmarking, obtaining an average fidelity >99%. Our protocol advances state-of-the-art quantum control and has immediate applications in quantum metrology and tomography.

13.
Phys Rev Lett ; 109(17): 173603, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215187

RESUMO

Unitary control of qudits can improve the collective spin squeezing of an atomic ensemble. Preparing the atoms in a state with large quantum fluctuations in magnetization strengthens the entangling Faraday interaction. The resulting increase in interatomic entanglement can be converted into metrologically useful spin squeezing. Further control can squeeze the internal atomic spin without compromising entanglement, providing an overall multiplicative factor in the collective squeezing. We model the effects of optical pumping and study the tradeoffs between enhanced entanglement and decoherence. For realistic parameters we see improvements of ~10 dB.

14.
Biol Open ; 1(1): 6-11, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213362

RESUMO

To obtain precise and reliable laboratory clearance rate (filtration rate) measurements with the 'flow-through chamber method' (FTC) the design must ensure that only inflow water reaches the bivalve's inhalant aperture and that exit flow is fully mixed. As earlier recommended these prerequisites can be checked by a plot of clearance rate (CR) versus increasing through-flow (Fl) to reach a plateau, which is the true CR, but we also recommend to plot percent particles cleared versus reciprocal through-flow where the plateau becomes the straight line CR/Fl, and we emphasize that the percent of particles cleared is in itself neither a criterion for valid CR measurement, nor an indicator of appropriate 'chamber geometry' as hitherto adapted in many studies. For the 'steady-state method' (SS), the design must ensure that inflow water becomes fully mixed with the bivalve's excurrent flow to establish a uniform chamber concentration prevailing at its incurrent flow and at the chamber outlet. These prerequisites can be checked by a plot of CR versus increasing Fl, which should give the true CR at all through-flows. Theoretically, the experimental uncertainty of CR for a given accuracy of concentration measurements depends on the percent reduction in particle concentration (100×P) from inlet to outlet of the ideal 'chamber geomety'. For FTC, it decreases with increasing values of P while for SS it first decreases but then increases again, suggesting the use of an intermediate value of P. In practice, the optimal value of P may depend on the given 'chamber geometry'. The fundamental differences between the FTC and the SS methods and practical guidelines for their use are pointed out, and new data on CR for the blue mussel, Mytilus edulis, illustrate a design and use of the SS method which may be employed in e.g. long-term growth experiments at constant algal concentrations.

15.
Phys Rev Lett ; 105(19): 193602, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-21231167

RESUMO

We describe a new approach to spin squeezing based on a double-pass Faraday interaction between an optical probe and an optically dense atomic sample. A quantum eraser is used to remove residual spin-probe entanglement, thereby realizing a single-axis twisting unitary map on the collective spin. This interaction can be phase matched, resulting in exponential enhancement of squeezing as a function of optical density for times short compared to the decoherence time. In practice the scaling and peak squeezing depends on decoherence, technical loss, and noise. Including these imperfections, our model indicates that ∼10 dB of squeezing should be achievable with laboratory parameters.

16.
Phys Rev Lett ; 103(23): 233001, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-20366146

RESUMO

We control the quantum mechanical motion of neutral atoms in an optical lattice by driving microwave transitions between spin states whose trapping potentials are spatially offset. Control of this offset with nanometer precision allows for adjustment of the coupling strength between different motional states, analogous to an adjustable effective Lamb-Dicke factor. This is used both for efficient one-dimensional sideband cooling of individual atoms to a vibrational ground state population of 97% and to drive coherent Rabi oscillation between arbitrary pairs of vibrational states. We further show that microwaves can drive well resolved transitions between motional states in maximally offset, shallow lattices, and thus in principle allow for coherent control of long-range quantum transport.

17.
Phys Rev Lett ; 99(16): 163002, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17995247

RESUMO

We demonstrate quantum control of a large spin angular momentum associated with the F=3 hyperfine ground state of 133Cs. Time-dependent magnetic fields and a static tensor light shift are used to implement near-optimal controls and map a fiducial state to a broad range of target states, with yields in the range 0.8-0.9. Squeezed states are produced also by an adiabatic scheme that is more robust against errors. Universal control facilitates the encoding and manipulation of qubits and qudits in atomic ground states and may lead to the improvement of some precision measurements.

18.
Phys Rev Lett ; 97(18): 180403, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-17155520

RESUMO

We demonstrate a fast, robust, and nondestructive protocol for quantum-state estimation based on continuous weak measurement in the presence of a controlled dynamical evolution. Our experiment uses optically probed atomic spins as a test bed and successfully reconstructs a range of trial states with fidelities of approximately 90%. The procedure holds promise as a practical diagnostic tool for the study of complex quantum dynamics, the testing of quantum hardware, and as a starting point for new types of quantum feedback control.

19.
Phys Rev Lett ; 96(4): 043001, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16486816

RESUMO

We demonstrate a weak continuous measurement of the pseudospin associated with the clock transition in a sample of Cs atoms. Our scheme uses an optical probe tuned near the D1 transition to measure the sample birefringence, which depends on the component of the collective pseudospin. At certain probe frequencies the differential light shift of the clock states vanishes, and the measurement is nonperturbing. In dense samples the measurement can be used to squeeze the collective clock pseudospin and has the potential to improve the performance of atomic clocks and interferometers.

20.
Phys Rev Lett ; 95(3): 030402, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16090722

RESUMO

We present a new procedure for quantum state reconstruction based on weak continuous measurement of an ensemble average. By applying controlled evolution to the initial state, new information is continually mapped onto the measured observable. A Bayesian filter is then used to update the state estimate in accordance with the measurement record. This generalizes the standard paradigm for quantum tomography based on strong, destructive measurements on separate ensembles. This approach to state estimation induces minimal perturbation of the measured system, giving information about observables whose evolution cannot be described classically in real time and opening the door to new types of quantum feedback control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA