Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(2): 2547-2558, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250393

RESUMO

To investigate the stability of nanobubbles in natural hard water, a series of eight samples ranging in hardness from 0 to 332 mg/L CaCO3 were sonicated for periods of 5-45 min with an ultrasonic horn. Conductivity, temperature, ζ-potential, composition, and pH of the water were analyzed, together with the crystal structure of any calcium carbonate precipitate. Quasi-stable populations of bulk nanobubbles in Millipore and soft water are characterized by a ζ-potential of -35 to -20 mV, decaying over 60 h or more. After sonicating the hardest waters for about 10 min, they turn cloudy due to precipitation of amorphous calcium carbonate when the water temperature reaches 40 °C; the ζ-potential then jumps from -10 to +20 mV and remains positive for several days. From an analysis of the change of conductivity of the hard water before and after sonication, it is estimated that 37 ± 5% of calcium was not originally in solution but existed in nanoscale prenucleation clusters, which decorate the nanobubbles formed in the early stages of sonication. Heating and charge screening in the nanobubble colloid cause the decorated bubbles to collapse or disperse, leaving an amorphous precursor of aragonite. Sonicating the soft supernatant increases its conductivity and pH and restores the negative ζ-potential associated with bulk nanobubbles, but there is no further precipitation. Our study of the correlation between nanobubble production and calcium agglomeration spanning the hardness and composition ranges of natural waters shows that the sonication method for introducing nanobubbles is viable only for hard water if it is kept cold; the stability of the nanobubble colloid will be reduced in any case by the presence of dissolved calcium and magnesium.

2.
J Colloid Interface Sci ; 629(Pt B): 814-824, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36195021

RESUMO

HYPOTHESIS: Ortho and para water are the two nuclear isomers where the hydrogen protons align to give a total nuclear spin of 1 or 0. The equilibrium ratio of 3:1 is established slowly in freshly evaporated water vapour while the isomers behave distinct gasses, with their own partial pressures. Magnetic-field-induced ortho âŸ· para transformations are expected to alter the evaporation rate. EXPERIMENT: Evaporation from beakers of deionized water and a 6 M solution of urea is monitored simultaneously for periods from 1 to 60 h with and without a 500 mT magnetic field, while logging the ambient temperature and humidity. Balances with the two beakers are shielded in the same Perspex container. Many runs have been conducted over a two-year period. FINDINGS: The evaporation rate of water is found to increase by 12 ± 7% of in the field but that of water with dissolved urea decreases by 28 ± 6%. Two effects are at play. One is dephasing of the Larmor precession of adjacent protons on a water molecule in a field gradient, which tends to equalize the isomer populations. The other is Lorentz stress on the moving charge dipole, which can increase the proportion of the ortho isomer. From analysis of the time and field dependence of the evaporation, we infer that the ortho fraction is 39 ± 1% in fresh vapour from water and 60 ± 5% in fresh vapour from urea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA