Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 125(6): 2166-2177, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949882

RESUMO

Unilateral-onset spike-wave discharges (SWDs) following fluid percussion injury (FPI) in rats have been used for nearly two decades as a model for complex partial seizures in human posttraumatic epilepsy (PTE). This study determined if SWDs with a unilateral versus bilateral cortical onset differed. In this experiment, 2-mo-old rats received severe FPI (3 atm) or sham surgery and were instrumented for chronic video-electrocorticography (ECoG) recording (up to 9 mo). The antiseizure drug, carbamazepine (CBZ), and the antiabsence drug, ethosuximide (ETX), were administered separately to determine if they selectively suppressed unilateral- versus bilateral-onset SWDs, respectively. SWDs did not significantly differ between FPI and sham rats on any measured parameter (wave-shape, frequency spectrum, duration, or age-related progression), including unilateral (∼17%) versus bilateral (∼83%) onsets. SWDs with a unilateral onset preferentially originated ipsilateral to the craniotomy in both FPI and sham rats, suggesting that the unilateral-onset SWDs were related to surgical injury and not specifically to FPI. ETX profoundly suppressed SWDs with either unilateral or bilateral onsets, and CBZ had no effect on either type of SWD. These results suggest that SWDs with either a unilateral or bilateral onset have a pharmacosensitivity similar to absence seizures and are very different from the complex partial seizures of PTE. Therefore, SWDs with a unilateral onset after FPI are not a model of the complex partial seizures that occur in PTE, and their use for finding new treatments for PTE could be counterproductive, particularly if their close similarity to normal brain oscillations is not acknowledged.NEW & NOTEWORTHY Unilateral-onset spike-wave discharges (SWDs) in rats have been used to model complex partial seizures in human posttraumatic epilepsy (PTE), compared to bilateral-onset SWDs thought to reflect human absence seizures. Here, we show that both unilateral- and bilateral-onset SWDs following traumatic brain injury are suppressed by the antiabsence drug ethosuximide and are unaffected by the antiseizure drug carbamazepine. We propose that unilateral-onset SWDs are not useful for studying mechanisms of, or treatments for, PTE.


Assuntos
Anticonvulsivantes/farmacologia , Lesões Encefálicas Traumáticas , Carbamazepina/farmacologia , Epilepsia , Etossuximida/farmacologia , Convulsões , Animais , Anticonvulsivantes/administração & dosagem , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/fisiopatologia , Carbamazepina/administração & dosagem , Modelos Animais de Doenças , Eletrocorticografia , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Epilepsia/fisiopatologia , Etossuximida/administração & dosagem , Masculino , Percussão , Ratos , Ratos Wistar , Convulsões/tratamento farmacológico , Convulsões/etiologia , Convulsões/fisiopatologia
2.
J Vis Exp ; (148)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31282886

RESUMO

The lateral fluid percussion injury (FPI) model is well established and has been used to study TBI and post-traumatic epilepsy (PTE). However, considerable variability has been reported for the specific parameters used in different studies that have employed this model, making it difficult to harmonize and interpret the results between laboratories. For example, variability has been reported regarding the size and location of the craniectomy, how the Luer lock hub is placed relative to the craniectomy, the atmospheric pressure applied to the dura and the duration of the pressure pulse. Each of these parameters can impact injury severity, which directly correlates with the incidence of PTE. This has been manifested as a wide range of mortality rates, righting reflex times and incidence of convulsive seizures reported. Here we provide a detailed protocol for the method we have used to help facilitate harmonization between studies. We used FPI in combination with a wireless EEG telemetry system to continuously monitor for electrographic changes and detect seizure activity.  FPI is induced by creating a 5 mm craniectomy over the left hemisphere, between the Bregma and Lambda and adjacent to the lateral ridge. A Luer lock hub is secured onto the skull over the craniectomy. This hub is connected to the FPI device, and a 20-millisecond pressure pulse is delivered directly to the intact dura through pressure tubing connected to the hub via a twist lock connector. Following recovery, rats are re-anesthetized to remove the hub. Five 0.5 mm, stainless steel EEG electrode screws are placed in contact with the dura through the skull and serve as four recording electrodes and one reference electrode. The electrode wires are collected into a pedestal connector which is secured into place with bone cement. Continuous video/EEG recordings are collected for up to 4 weeks post TBI.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Eletroencefalografia/métodos , Epilepsia Pós-Traumática/fisiopatologia , Percussão/efeitos adversos , Telemetria/métodos , Animais , Modelos Animais de Doenças , Eletroencefalografia/instrumentação , Masculino , Percussão/métodos , Ratos , Telemetria/instrumentação , Gravação em Vídeo
3.
Proc Natl Acad Sci U S A ; 115(21): E4767-E4776, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29743190

RESUMO

Reproducible quantification of large biological cohorts is critical for clinical/pharmaceutical proteomics yet remains challenging because most prevalent methods suffer from drastically declined commonly quantified proteins and substantially deteriorated quantitative quality as cohort size expands. MS2-based data-independent acquisition approaches represent tremendous advancements in reproducible protein measurement, but often with limited depth. We developed IonStar, an MS1-based quantitative approach enabling in-depth, high-quality quantification of large cohorts by combining efficient/reproducible experimental procedures with unique data-processing components, such as efficient 3D chromatographic alignment, sensitive and selective direct ion current extraction, and stringent postfeature generation quality control. Compared with several popular label-free methods, IonStar exhibited far lower missing data (0.1%), superior quantitative accuracy/precision [∼5% intragroup coefficient of variation (CV)], the widest protein abundance range, and the highest sensitivity/specificity for identifying protein changes (<5% false altered-protein discovery) in a benchmark sample set (n = 20). We demonstrated the usage of IonStar by a large-scale investigation of traumatic injuries and pharmacological treatments in rat brains (n = 100), quantifying >7,000 unique protein groups (>99.8% without missing data across the 100 samples) with a low false discovery rate (FDR), two or more unique peptides per protein, and high quantitative precision. IonStar represents a reliable and robust solution for precise and reproducible protein measurement in large cohorts.


Assuntos
Biomarcadores/análise , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Metanfetamina/farmacologia , Proteoma/análise , Proteômica/métodos , Animais , Encéfalo/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Estimulantes do Sistema Nervoso Central/farmacologia , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
4.
Glia ; 64(3): 396-406, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26496514

RESUMO

Development of neuropathic pain occurs in a major portion of traumatic spinal cord injury (SCI) patients, resulting in debilitating and often long-term physical and psychological burdens. Following SCI, chronic dysregulation of extracellular glutamate homeostasis has been shown to play a key role in persistent central hyperexcitability of superficial dorsal horn neurons that mediate pain neurotransmission, leading to various forms of neuropathic pain. Astrocytes express the major CNS glutamate transporter, GLT1, which is responsible for the vast majority of functional glutamate uptake, particularly in the spinal cord. In our unilateral cervical contusion model of mouse SCI that is associated with ipsilateral forepaw heat hypersensitivity (a form of chronic at-level neuropathic pain-related behavior), we previously reported significant and long-lasting reductions in GLT1 expression and functional GLT1-mediated glutamate uptake in cervical spinal cord dorsal horn. To therapeutically address GLT1 dysfunction following cervical contusion SCI, we injected an adeno-associated virus type 8 (AAV8)-Gfa2 vector into the superficial dorsal horn to increase GLT1 expression selectively in astrocytes. Compared to both contusion-only animals and injured mice that received AAV8-eGFP control injection, AAV8-GLT1 delivery increased GLT1 protein expression in astrocytes of the injured cervical spinal cord dorsal horn, resulting in a significant and persistent reversal of already-established heat hypersensitivity. Furthermore, AAV8-GLT1 injection significantly reduced expression of the transcription factor and marker of persistently increased neuronal activation, ΔFosB, in superficial dorsal horn neurons. These results demonstrate that focal restoration of GLT1 expression in the superficial dorsal horn is a promising target for treating chronic neuropathic pain following SCI.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica/genética , Neuralgia/etiologia , Células do Corno Posterior/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Medula Cervical , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/genética , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/patologia , Força Muscular/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Proteínas Oncogênicas v-fos/metabolismo , Limiar da Dor/fisiologia , Fosfopiruvato Hidratase/metabolismo , Tubulina (Proteína)/metabolismo
5.
Neurobiol Dis ; 78: 12-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25818008

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by relatively rapid degeneration of both upper and lower motor neurons, with death normally occurring 2-5years following diagnosis primarily due to respiratory paralysis resulting from phrenic motor neuron (PhMN) loss and consequent diaphragm denervation. In ALS, cellular abnormalities are not limited to MNs. For example, decreased levels and aberrant functioning of the major central nervous system (CNS) glutamate transporter, GLT1, occur in spinal cord and motor cortex astrocytes of both humans with ALS and in SOD1(G93A) rodents, a widely studied ALS animal model. This results in dysregulation of extracellular glutamate homeostasis and consequent glutamate excitotoxicity, a primary mechanism responsible for MN loss in ALS animal models and in the human disease. Given these observations of GLT1 dysfunction in areas of MN loss, as well as the importance of testing therapeutic strategies for preserving PhMNs in ALS, we evaluated intraspinal delivery of an adeno-associated virus type 8 (AAV8)-Gfa2 vector to the cervical spinal cord ventral horn of SOD1(G93A) ALS mice for focally restoring intraspinal GLT1 expression. AAV8 was specifically injected into the ventral horn bilaterally throughout the cervical enlargement at 110days of age, a clinically-relevant time point coinciding with phenotypic/symptomatic disease onset. Intraspinal delivery of AAV8-Gfa2-GLT1 resulted in robust transduction primarily of GFAP(+) astrocytes that persisted until disease endstage, as well as a 2-3-fold increase in total intraspinal GLT1 protein expression in the ventral horn. Despite this robust level of astrocyte transduction and GLT1 elevation, GLT1 overexpression did not protect PhMNs, preserve histological PhMN innervation of the diaphragm NMJ, or prevent decline in diaphragmatic respiratory function as assessed by phrenic nerve-diaphragm compound muscle action potential (CMAP) recordings compared to control AAV8-Gfa2-eGFP injected mice. In addition, AAV-Gfa2-GLT1 did not delay forelimb disease onset, extend disease duration (i.e. time from either forelimb or hindlimb disease onsets to endstage) or prolong overall animal survival. These findings suggest that focal restoration of GLT1 expression in astrocytes of the cervical spinal cord using AAV delivery is not an effective therapy for ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Medula Cervical/metabolismo , Transportador 2 de Aminoácido Excitatório/administração & dosagem , Transportador 2 de Aminoácido Excitatório/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/prevenção & controle , Animais , Astrócitos/metabolismo , Medula Cervical/virologia , Dependovirus , Diafragma/inervação , Diafragma/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Vetores Genéticos , Ácido Glutâmico/metabolismo , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Superóxido Dismutase/genética
6.
Mol Ther ; 23(3): 533-48, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25492561

RESUMO

Approximately half of traumatic spinal cord injury (SCI) cases affect cervical regions, resulting in chronic respiratory compromise. The majority of these injuries affect midcervical levels, the location of phrenic motor neurons (PMNs) that innervate the diaphragm. A valuable opportunity exists following SCI for preventing PMN loss that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxicity due to dysregulation of extracellular glutamate homeostasis. Astrocytes express glutamate transporter 1 (GLT1), which is responsible for the majority of CNS glutamate clearance. Given our observations of GLT1 dysfunction post-SCI, we evaluated intraspinal transplantation of Glial-Restricted Precursors (GRPs)--a class of lineage-restricted astrocyte progenitors--into ventral horn following cervical hemicontusion as a novel strategy for reconstituting GLT1 function, preventing excitotoxicity and protecting PMNs in the acutely injured spinal cord. We find that unmodified transplants express low levels of GLT1 in the injured spinal cord. To enhance their therapeutic properties, we engineered GRPs with AAV8 to overexpress GLT1 only in astrocytes using the GFA2 promoter, resulting in significantly increased GLT1 protein expression and functional glutamate uptake following astrocyte differentiation in vitro and after transplantation into C4 hemicontusion. Compared to medium-only control and unmodified GRPs, GLT1-overexpressing transplants reduced lesion size, diaphragm denervation and diaphragm dysfunction. Our findings demonstrate transplantation-based replacement of astrocyte GLT1 is a promising approach for SCI.


Assuntos
Astrócitos/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Diafragma/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Traumatismos da Medula Espinal/terapia , Medula Espinal/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Dependovirus/genética , Diafragma/patologia , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Nervo Frênico/lesões , Nervo Frênico/metabolismo , Nervo Frênico/patologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Transgenes
7.
J Neurosci ; 34(22): 7622-38, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24872566

RESUMO

A major portion of spinal cord injury (SCI) cases affect midcervical levels, the location of the phrenic motor neuron (PhMN) pool that innervates the diaphragm. While initial trauma is uncontrollable, a valuable opportunity exists in the hours to days following SCI for preventing PhMN loss and consequent respiratory dysfunction that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxic cell death due to dysregulation of extracellular glutamate homeostasis. GLT1, mainly expressed by astrocytes, is responsible for the vast majority of functional uptake of extracellular glutamate in the CNS, particularly in spinal cord. We found that, in bacterial artificial chromosome-GLT1-enhanced green fluorescent protein reporter mice following unilateral midcervical (C4) contusion SCI, numbers of GLT1-expressing astrocytes in ventral horn and total intraspinal GLT1 protein expression were reduced soon after injury and the decrease persisted for ≥6 weeks. We used intraspinal delivery of adeno-associated virus type 8 (AAV8)-Gfa2 vector to rat cervical spinal cord ventral horn for targeting focal astrocyte GLT1 overexpression in areas of PhMN loss. Intraspinal delivery of AAV8-Gfa2-GLT1 resulted in transduction primarily of GFAP(+) astrocytes that persisted for ≥6 weeks postinjury, as well as increased intraspinal GLT1 protein expression. Surprisingly, we found that astrocyte-targeted GLT1 overexpression increased lesion size, PhMN loss, phrenic nerve axonal degeneration, and diaphragm neuromuscular junction denervation, and resulted in reduced functional diaphragm innervation as assessed by phrenic nerve-diaphragm compound muscle action potential recordings. These results demonstrate that GLT1 overexpression via intraspinal AAV-Gfa2-GLT1 delivery exacerbates neuronal damage and increases respiratory impairment following cervical SCI.


Assuntos
Astrócitos/patologia , Vértebras Cervicais , Diafragma/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Membro Anterior/fisiopatologia , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Astrócitos/metabolismo , Diafragma/fisiopatologia , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Membro Anterior/metabolismo , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Nervo Frênico/metabolismo , Nervo Frênico/patologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
8.
J Neurosci ; 34(6): 2349-54, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24501373

RESUMO

Adult-generated granule cells (GCs) in the dentate gyrus must establish synapses with preexisting neurons to participate in network activity. To determine the source of early glutamatergic synapses on newborn GCs in adult mice, we examined synaptic currents at the developmental stage when NMDA receptor-mediated silent synapses are first established. We show that hilar mossy cells provide initial glutamatergic synapses as well as disynaptic GABAergic input to adult-generated dentate GCs.


Assuntos
Ácido Glutâmico/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Fatores Etários , Animais , Giro Denteado/citologia , Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
9.
Int J Mol Sci ; 15(1): 1402-17, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24447929

RESUMO

Phenoxybenzamine (PBZ) is an FDA approved α-1 adrenergic receptor antagonist that is currently used to treat symptoms of pheochromocytoma. However, it has not been studied as a neuroprotective agent for traumatic brain injury (TBI). While screening neuroprotective candidates, we found that phenoxybenzamine reduced neuronal death in rat hippocampal slice cultures following exposure to oxygen glucose deprivation (OGD). Using this system, we found that phenoxybenzamine reduced neuronal death over a broad dose range (0.1 µM-1 mM) and provided efficacy when delivered up to 16 h post-OGD. We further tested phenoxybenzamine in the rat lateral fluid percussion model of TBI. When administered 8 h after TBI, phenoxybenzamine improved neurological severity scoring and foot fault assessments. At 25 days post injury, phenoxybenzamine treated TBI animals also showed a significant improvement in both learning and memory compared to saline treated controls. We further examined gene expression changes within the cortex following TBI. At 32 h post-TBI phenoxybenzamine treated animals had significantly lower expression of pro-inflammatory signaling proteins CCL2, IL1ß, and MyD88, suggesting that phenoxybenzamine may exert a neuroprotective effect by reducing neuroinflammation after TBI. These data suggest that phenonxybenzamine may have application in the treatment of TBI.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Fenoxibenzamina/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Morte Celular , Sobrevivência Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Aprendizagem em Labirinto , Memória , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Fenoxibenzamina/administração & dosagem , Fenoxibenzamina/farmacologia , Ratos , Ratos Sprague-Dawley
10.
J Neurosurg ; 120(3): 628-38, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24266544

RESUMO

OBJECT: New experimental models and diagnostic methods are needed to better understand the pathophysiology of focal neocortical epilepsies in a search for improved epilepsy treatment options. The authors hypothesized that a focal disruption of adenosine homeostasis in the neocortex might be sufficient to trigger electrographic seizures. They further hypothesized that a focal disruption of adenosine homeostasis might affect microcirculation and thus offer a diagnostic opportunity for the detection of a seizure focus located in the neocortex. METHODS: Focal disruption of adenosine homeostasis was achieved by injecting an adeno-associated virus (AAV) engineered to overexpress adenosine kinase (ADK), the major metabolic clearance enzyme for the brain's endogenous anticonvulsant adenosine, into the neocortex of mice. Eight weeks following virus injection, the affected brain area was imaged via optical microangiography (OMAG) to detect changes in microcirculation. After completion of imaging, cortical electroencephalography (EEG) recordings were obtained from the imaged brain area. RESULTS: Viral expression of the Adk cDNA in astrocytes generated a focal area (~ 2 mm in diameter) of ADK overexpression within the neocortex. OMAG scanning revealed a reduction in vessel density within the affected brain area of approximately 23% and 29% compared with control animals and the contralateral hemisphere, respectively. EEG recordings revealed electrographic seizures within the focal area of ADK overexpression at a rate of 1.3 ± 0.2 seizures per hour (mean ± SEM). CONCLUSIONS: The findings of this study suggest that focal adenosine deficiency is sufficient to generate a neocortical focus of hyperexcitability, which is also characterized by reduced vessel density. The authors conclude that their model constitutes a useful tool to study neocortical epilepsies and that OMAG constitutes a noninvasive diagnostic tool for the imaging of seizure foci with disrupted adenosine homeostasis.


Assuntos
Adenosina Quinase/genética , Adenosina/deficiência , Astrócitos/enzimologia , Epilepsias Parciais/metabolismo , Neocórtex/metabolismo , Adenosina/metabolismo , Adenosina Quinase/metabolismo , Animais , Circulação Cerebrovascular/genética , Dependovirus/genética , Modelos Animais de Doenças , Eletroencefalografia , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/genética , Vetores Genéticos , Homeostase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação/genética , Neocórtex/irrigação sanguínea , Neocórtex/citologia
11.
Exp Neurol ; 253: 31-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24333768

RESUMO

We recently published data that showed low dose of methamphetamine is neuroprotective when delivered 3 h after a severe traumatic brain injury (TBI). In the current study, we further characterized the neuroprotective potential of methamphetamine by determining the lowest effective dose, maximum therapeutic window, pharmacokinetic profile and gene expression changes associated with treatment. Graded doses of methamphetamine were administered to rats beginning 8 h after severe TBI. We assessed neuroprotection based on neurological severity scores, foot fault assessments, cognitive performance in the Morris water maze, and histopathology. We defined 0.250 mg/kg/h as the lowest effective dose and treatment at 12 h as the therapeutic window following severe TBI. We examined gene expression changes following TBI and methamphetamine treatment to further define the potential molecular mechanisms of neuroprotection and determined that methamphetamine significantly reduced the expression of key pro-inflammatory signals. Pharmacokinetic analysis revealed that a 24-hour intravenous infusion of methamphetamine at a dose of 0.500 mg/kg/h produced a plasma Cmax value of 25.9 ng/ml and a total exposure of 544 ng/ml over a 32 hour time frame. This represents almost half the 24-hour total exposure predicted for a daily oral dose of 25mg in a 70 kg adult human. Thus, we have demonstrated that methamphetamine is neuroprotective when delivered up to 12 h after injury at doses that are compatible with current FDA approved levels.


Assuntos
Estimulantes do Sistema Nervoso Central/uso terapêutico , Transtornos Cognitivos/prevenção & controle , Metanfetamina/uso terapêutico , Doenças do Sistema Nervoso/prevenção & controle , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Doenças do Sistema Nervoso/etiologia , Proteínas de Neurofilamentos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Wistar , Percepção Espacial/efeitos dos fármacos , Fatores de Tempo
12.
PLoS One ; 8(4): e61241, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637800

RESUMO

We assessed the effects of low dose methamphetamine treatment of traumatic brain injury (TBI) in rats by employing MRI, immunohistology, and neurological functional tests. Young male Wistar rats were subjected to TBI using the controlled cortical impact model. The treated rats (n = 10) received an intravenous (iv) bolus dose of 0.42 mg/kg of methamphetamine at eight hours after the TBI followed by continuous iv infusion for 24 hrs. The control rats (n = 10) received the same volume of saline using the same protocol. MRI scans, including T2-weighted imaging (T2WI) and diffusion tensor imaging (DTI), were performed one day prior to TBI, and at 1 and 3 days post TBI, and then weekly for 6 weeks. The lesion volumes of TBI damaged cerebral tissue were demarcated by elevated values in T2 maps and were histologically identified by hematoxylin and eosin (H&E) staining. The fractional anisotropy (FA) values within regions-of-interest (ROI) were measured in FA maps deduced from DTI, and were directly compared with Bielschowsky's silver and Luxol fast blue (BLFB) immunohistological staining. No therapeutic effect on lesion volumes was detected during 6 weeks after TBI. However, treatment significantly increased FA values in the recovery ROI compared with the control group at 5 and 6 weeks after TBI. Myelinated axons histologically measured using BLFB were significantly increased (p<0.001) in the treated group (25.84±1.41%) compared with the control group (17.05±2.95%). Significant correlations were detected between FA and BLFB measures in the recovery ROI (R = 0.54, p<0.02). Methamphetamine treatment significantly reduced modified neurological severity scores from 2 to 6 weeks (p<0.05) and foot-fault errors from 3 days to 6 weeks (p<0.05) after TBI. Thus, the FA data suggest that methamphetamine treatment improves white matter reorganization from 5 to 6 weeks after TBI in rats compared with saline treatment, which may contribute to the observed functional recovery.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Encéfalo/patologia , Metanfetamina/administração & dosagem , Neurônios/efeitos dos fármacos , Animais , Axônios/patologia , Imagem de Difusão por Ressonância Magnética , Imuno-Histoquímica , Masculino , Neurônios/patologia , Ratos , Ratos Wistar
13.
PLoS One ; 7(9): e40881, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984394

RESUMO

Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.


Assuntos
Carnitina/metabolismo , Glucose/deficiência , Hipocampo/metabolismo , Hipocampo/patologia , Homeostase , Mitocôndrias/patologia , Oxigênio/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Carnitina/farmacologia , Morte Celular/efeitos dos fármacos , Glucose/metabolismo , Hipocampo/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Técnicas In Vitro , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Superóxidos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Sobrevivência de Tecidos/efeitos dos fármacos
14.
J Trauma Acute Care Surg ; 73(2 Suppl 1): S165-72, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22847088

RESUMO

BACKGROUND: Methamphetamine increases the release and blocks the reuptake of dopamine. The moderate activation of dopamine receptors may elicit neuroprotective effects. We have recently demonstrated that low doses of methamphetamine reduce neuronal loss after ischemic injury. On the basis of this finding, we hypothesized that methamphetamine could also prevent neuronal loss and improve functional behavior after severe traumatic brain injury (TBI). METHODS: The rat lateral fluid percussion injury model was used to generate severe TBI. Three hours after injury, animals were treated with saline or methamphetamine. Neurological severity scores and foot fault assessments were used to determine whether treatment enhanced recovery after injury. The potential for methamphetamine treatment to improve cognitive function was assessed using the Morris water maze. Forty-eight hours after injury, paraffin-embedded brain sections were TUNEL stained to measure apoptotic cell death. Sections were also stained with antibody to doublecortin to quantify immature neurons within the dentate gyrus. RESULTS: Treatment with low-dose methamphetamine significantly reduced both behavioral and cognitive dysfunction after severe TBI. Methamphetamine-treated animals scored significantly lower on neurological severity scores and had significantly less foot faults after TBI compared with saline-treated control rats. Furthermore, methamphetamine treatment restored learning and memory function to near normal ability after TBI. At 48 hours after injury, apoptotic cell death within the hippocampus was significantly reduced, and the presence of immature neurons was significantly increased in methamphetamine-treated rats compared with saline-treated controls. CONCLUSION: Treatment with low-dose methamphetamine after severe TBI elicits a robust neuroprotective response resulting in significant improvements in behavioral and cognitive functions.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Metanfetamina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Proteína Duplacortina , Masculino , Metanfetamina/administração & dosagem , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Wistar
15.
Free Radic Biol Med ; 53(5): 1139-51, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22728269

RESUMO

Neonatal brain hypoxia-ischemia (HI) results in neuronal cell death. Previous studies indicate that reactive oxygen species, such as superoxide, play a key role in this process. However, the cellular sources have not been established. In this study we examine the role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex in neonatal HI brain injury and elucidate its mechanism of activation. Rat hippocampal slices were exposed to oxygen glucose deprivation (OGD) to mimic the conditions seen in HI. Initial studies confirmed an important role for NADPH oxidase-derived superoxide in the oxidative stress associated with OGD. Further, the OGD-mediated increase in apoptotic cell death was inhibited by the NADPH oxidase inhibitor apocynin. The activation of NADPH oxidase was found to be dependent on the p38 mitogen-activated protein kinase-mediated phosphorylation and activation of the p47(phox) subunit. Using an adeno-associated virus antisense construct to selectively decrease p47(phox) expression in neurons showed that this led to inhibition of both the increase in superoxide and the neuronal cell death associated with OGD. We also found that NADPH oxidase inhibition in a neonatal rat model of HI or scavenging hydrogen peroxide reduced brain injury. Thus, we conclude that activation of the NADPH oxidase complex contributes to the oxidative stress during HI and that therapies targeted against this complex could provide neuroprotection against the brain injury associated with neonatal HI.


Assuntos
Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , NADPH Oxidases/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Técnicas de Cultura de Órgãos , Superóxidos/metabolismo , Acetofenonas/farmacologia , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Glucose/deficiência , Glucose/metabolismo , Microtomia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Eur J Neurosci ; 34(7): 1093-101, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21939459

RESUMO

The pathological basis of neonatal hypoxia-ischemia (HI) brain damage is characterized by neuronal cell loss. Oxidative stress is thought to be one of the main causes of HI-induced neuronal cell death. The p38 mitogen-activated protein kinase (MAPK) is activated under conditions of cell stress. However, its pathogenic role in regulating the oxidative stress associated with HI injury in the brain is not well understood. Thus, this study was conducted to examine the role of p38 MAPK signaling in neonatal HI brain injury using neonatal rat hippocampal slice cultures exposed to oxygen/glucose deprivation (OGD). Our results indicate that OGD led to a transient increase in p38 MAPK activation that preceded increases in superoxide generation and neuronal death. This increase in neuronal cell death correlated with an increase in the activation of caspase-3 and the appearance of apoptotic neuronal cells. Pre-treatment of slice cultures with the p38 MAPK inhibitor, SB203580, or the expression of an antisense p38 MAPK construct only in neuronal cells, through a Synapsin I-1-driven adeno-associated virus vector, inhibited p38 MAPK activity and exerted a neuroprotective effect as demonstrated by decreases in OGD-mediated oxidative stress, caspase activation and neuronal cell death. Thus, we conclude that the activation of p38 MAPK in neuronal cells plays a key role in the oxidative stress and neuronal cell death associated with OGD.


Assuntos
Glucose/deficiência , Hipocampo/enzimologia , Hipóxia/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imidazóis/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
17.
Neuropharmacology ; 61(4): 677-86, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21635908

RESUMO

High doses of methamphetamine induce the excessive release of dopamine resulting in neurotoxicity. However, moderate activation of dopamine receptors can promote neuroprotection. Therefore, we used in vitro and in vivo models of stroke to test the hypothesis that low doses of methamphetamine could induce neuroprotection. We demonstrate that methamphetamine does induce a robust, dose-dependent, neuroprotective response in rat organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD). A similar dose dependant neuroprotective effect was observed in rats that received an embolic middle cerebral artery occlusion (MCAO). Significant improvements in behavioral outcomes were observed in rats when methamphetamine administration delayed for up to 12 h after MCAO. Methamphetamine-mediated neuroprotection was significantly reduced in slice cultures by the addition of D1 and D2 dopamine receptor antagonist. Treatment of slice cultures with methamphetamine resulted in the dopamine-mediated activation of AKT in a PI3K dependant manner. A similar increase in phosphorylated AKT was observed in the striatum, cortex and hippocampus of methamphetamine treated rats following MCAO. Methamphetamine-mediated neuroprotection was lost in rats when PI3K activity was blocked by wortmannin. Finally, methamphetamine treatment decreased both cleaved caspase 3 levels in slice cultures following OGD and TUNEL staining within the striatum and cortex in rats following transient MCAO. These data indicate that methamphetamine can mediate neuroprotection through activation of a dopamine/PI3K/AKT-signaling pathway.


Assuntos
Metanfetamina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Fosfatidilinositol 3-Quinase/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/patologia , Masculino , Técnicas de Cultura de Órgãos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle
18.
J Cereb Blood Flow Metab ; 31(7): 1648-59, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21427729

RESUMO

Adenosine kinase (ADK) is the major negative metabolic regulator of the endogenous neuroprotectant and homeostatic bioenergetic network regulator adenosine. We used three independent experimental approaches to determine the role of ADK as a molecular target for predicting the brain's susceptibility to ischemic stroke. First, when subjected to a middle cerebral artery occlusion model of focal cerebral ischemia, transgenic fb-Adk-def mice, which have increased ADK expression in striatum (164%) and reduced ADK expression in cortical forebrain (65%), demonstrate increased striatal infarct volume (126%) but almost complete protection of cortex (27%) compared with wild-type (WT) controls, indicating that cerebral injury levels directly correlate to levels of ADK in the CNS. Second, we demonstrate abrogation of lipopolysaccharide (LPS)-induced ischemic preconditioning in transgenic mice with brain-wide ADK overexpression (Adk-tg), indicating that ADK activity negatively regulates LPS-induced tolerance to stroke. Third, using adeno-associated virus-based vectors that carry Adk-sense or -antisense constructs to overexpress or knockdown ADK in vivo, we demonstrate increased (126%) or decreased (51%) infarct volume, respectively, 4 weeks after injection into the striatum of WT mice. Together, our data define ADK as a possible therapeutic target for modulating the degree of stroke-induced brain injury.


Assuntos
Adenosina Quinase/metabolismo , Isquemia Encefálica/enzimologia , Isquemia Encefálica/patologia , Encéfalo/enzimologia , Encéfalo/patologia , Adenosina/metabolismo , Adenosina Quinase/genética , Animais , Encéfalo/irrigação sanguínea , Isquemia Encefálica/terapia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Regulação para Baixo , Deleção de Genes , Expressão Gênica , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/terapia , Precondicionamento Isquêmico , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
19.
Adv Otorhinolaryngol ; 66: 87-98, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19494574

RESUMO

The lack of effective treatments for many forms of hearing and vestibular disorders has produced interest in virally mediated gene therapies. However, to develop a gene therapy strategy that would successfully treat inner ear disorders, appropriate viral vectors capable of transfecting cochlear and support cells must be identified. While virally mediated gene transfer into the inner ear has been accomplished using herpes simplex type I virus, vaccinia virus, retroviruses, adenovirus, and adeno-associated virus (AAV), we will restrict our discussion to AAV and adenoviral vectors. Issues such as vector toxicity and load, viral serotype and backbone, and promoter specificity are discussed and contrasted for both in vivo vs. in vitro inner ear gene transfer.


Assuntos
Adenoviridae/genética , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Regiões Promotoras Genéticas/genética , Animais , Cóclea/metabolismo , Citomegalovirus/genética , Humanos , Imuno-Histoquímica , Especificidade de Órgãos , Receptores Virais/metabolismo , Sorotipagem , Transgenes/genética , Carga Viral , Replicação Viral
20.
Neuropharmacology ; 49(6): 850-61, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16183084

RESUMO

The excitatory amino acid transporters (EAATs) play key roles in the regulation of CNS L-glutamate, especially related to synthesis, signal termination, synaptic spillover, and excitotoxic protection. Inhibitors available to delineate EAAT pharmacology and function are essentially limited to those that non-selectively block all EAATs or those that exhibit a substantial preference for EAAT2. Thus, it is difficult to selectively study the other subtypes, particularly EAAT1 and EAAT3. Structure activity studies on a series of beta-substituted aspartate analogues identify L-beta-benzyl-aspartate (L-beta-BA) as among the first blockers that potently and preferentially inhibits the neuronal EAAT3 subtype. Kinetic analysis of D-[(3)H]aspartate uptake into C17.2 cells expressing the hEAATs demonstrate that L-beta-threo-BA is the more potent diastereomer, acts competitively, and exhibits a 10-fold preference for EAAT3 compared to EAAT1 and EAAT2. Electrophysiological recordings of EAAT-mediated currents in Xenopus oocytes identify L-beta-BA as a non-substrate inhibitor. Analyzing L-beta-threo-BA within the context of a novel EAAT2 pharmacophore model suggests: (1) a highly conserved positioning of the electrostatic carboxyl and amino groups; (2) nearby regions that accommodate select structural modifications (cyclopropyl rings, methyl groups, oxygen atoms); and (3) a unique region L-beta-threo-BA occupied by the benzyl moieties of L-TBOA, L-beta-threo-BA and related analogues. It is plausible that the preference of L-beta-threo-BA and L-TBOA for EAAT3 and EAAT2, respectively, could reside in the latter two pharmacophore regions.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Transportador 3 de Aminoácido Excitatório/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Animais , Ácido Aspártico/química , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Transportador 1 de Aminoácido Excitatório/fisiologia , Transportador 2 de Aminoácido Excitatório/fisiologia , Transportador 3 de Aminoácido Excitatório/fisiologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Modelos Moleculares , Neurônios/metabolismo , Oócitos , Técnicas de Patch-Clamp/métodos , Transfecção/métodos , Trítio/farmacocinética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA