Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11329, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698930

RESUMO

Understanding how tropical forests respond to abiotic environmental changes is critical for preserving biodiversity, mitigating climate change, and maintaining ecosystem services in the coming century. To evaluate the relative roles of the abiotic environment and human disturbance on Central African tree community composition, we employ tree inventory data, remotely sensed climatic data, and soil nutrient data collected from 30 1-ha plots distributed across a large-scale observational experiment in forests that had been differently impacted by logging and hunting in northern Republic of Congo. We show that the composition of Afrotropical plant communities at this scale responds to human disturbance more than to climate, with particular sensitivities to hunting and distance to the nearest village (a proxy for other human activities, including tree-cutting and gathering). These findings contrast neotropical predictions, highlighting the unique ecological, evolutionary, and anthropogenic history of Afrotropical forests.

2.
Curr Biol ; 34(9): R418-R434, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714175

RESUMO

Ecosystem restoration can increase the health and resilience of nature and humanity. As a result, the international community is championing habitat restoration as a primary solution to address the dual climate and biodiversity crises. Yet most ecosystem restoration efforts to date have underperformed, failed, or been burdened by high costs that prevent upscaling. To become a primary, scalable conservation strategy, restoration efficiency and success must increase dramatically. Here, we outline how integrating ten foundational ecological theories that have not previously received much attention - from hierarchical facilitation to macroecology - into ecosystem restoration planning and management can markedly enhance restoration success. We propose a simple, systematic approach to determining which theories best align with restoration goals and are most likely to bolster their success. Armed with a century of advances in ecological theory, restoration practitioners will be better positioned to more cost-efficiently and effectively rebuild the world's ecosystems and support the resilience of our natural resources.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Recuperação e Remediação Ambiental/métodos , Biodiversidade , Mudança Climática
3.
Bioscience ; 73(10): 721-727, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37854893

RESUMO

Anthropogenic pressures are causing the widespread loss of wildlife species and populations, with adverse consequences for ecosystem functioning. This phenomenon has been widely but inconsistently referred to as defaunation. A cohesive, quantitative framework for defining and evaluating defaunation is necessary for advancing biodiversity conservation. Likening defaunation to deforestation, we propose an operational framework for defaunation that defines it and related terms, situates defaunation relative to intact communities and faunal degradation, and encourages quantitative, ecologically reasonable, and equitable measurements. We distinguish between defaunation, the conversion of an ecosystem from having wild animals to not having wild animals, and faunal degradation, the process of losing animals or species from an animal community. The quantification of context-relevant defaunation boundaries or baselines is necessary to compare faunal communities over space and time. Situating a faunal community on the degradation curve can promote Global Biodiversity Framework targets, advancing the 2050 Vision for Biodiversity.

4.
Sci Rep ; 13(1): 10259, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355713

RESUMO

Although individuals of some species appear able to distinguish among individuals of a second species, an alternative explanation is that individuals of the first species may simply be distinguishing between familiar and unfamiliar individuals of the second species. In that case, they would not be learning unique characteristics of any given heterospecific, as commonly assumed. Here we show that female Northern Mockingbirds (Mimus polyglottos) can quickly learn to distinguish among different familiar humans, flushing sooner from their nest when approached by people who pose increasingly greater threats. These results demonstrate that a common small songbird has surprising cognitive abilities, which likely facilitated its widespread success in human-dominated habitats. More generally, urban wildlife may be more perceptive of differences among humans than previously imagined.


Assuntos
Passeriformes , Aves Canoras , Animais , Humanos , Feminino , Animais Selvagens , Aprendizagem , Cognição
5.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400503

RESUMO

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Assuntos
Fertilidade , Modelos Biológicos , Regeneração , Árvores/crescimento & desenvolvimento , Florestas
6.
Sci Rep ; 11(1): 12634, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135350

RESUMO

The critically endangered African forest elephant (Loxodonta cyclotis) plays a vital role in maintaining the structure and composition of Afrotropical forests, but basic information is lacking regarding the drivers of elephant movement and behavior at landscape scales. We use GPS location data from 96 individuals throughout Gabon to determine how five movement behaviors vary at different scales, how they are influenced by anthropogenic and environmental covariates, and to assess evidence for behavioral syndromes-elephants which share suites of similar movement traits. Elephants show some evidence of behavioral syndromes along an 'idler' to 'explorer' axis-individuals that move more have larger home ranges and engage in more 'exploratory' movements. However, within these groups, forest elephants express remarkable inter-individual variation in movement behaviours. This variation highlights that no two elephants are the same and creates challenges for practitioners aiming to design conservation initiatives.


Assuntos
Elefantes/fisiologia , Movimento/fisiologia , Animais , Comportamento Animal/fisiologia , Espécies em Perigo de Extinção , Feminino , Florestas , Gabão , Masculino
7.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001597

RESUMO

The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests.


Assuntos
Mudança Climática , Floresta Úmida , Árvores/crescimento & desenvolvimento , Clima Tropical , Ciclo do Carbono , Secas , El Niño Oscilação Sul , Temperatura Alta , Humanos , Estações do Ano
8.
AoB Plants ; 12(2): plz048, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32346468

RESUMO

Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant's life history and environmental variability that ultimately influences a population's ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.

9.
PLoS One ; 14(3): e0213971, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30901366

RESUMO

Crop damage by forest elephants (Loxodonta africana cyclotis) and the resulting human-elephant conflict are issues of great concern for both the conservation of the species and the protection of rural livelihoods in Central Africa. Addressing these problems requires identifying the factors that facilitate or impede crop-raiding by forest elephants. Yet to date, the environmental or anthropogenic factors that influence the occurrence and intensity of crop-raiding by forest elephants are largely unknown. We used a multivariate approach to investigate conditions under which forest elephants raid some fields and not others in the buffer zone of Monts de Cristal National Park (MCNP), Gabon. We first interviewed 121 farmers from 11 villages situated within 10 km of MCNP regarding the occurrence of elephant crop-raiding of their fields. We then collected data on 39 explanatory variables to characterize the agricultural fields. Of these, the most important predictors of elephant raid occurrence of crop damage were presence of fruit trees, elephant deterrents (scarecrows, fire, wire string fences and empty barrels), and field topography. We secondly assessed the effect of stage of crop growth, presence of fruit trees, field topography and presence of elephant deterrents on crop-raiding occurrence and intensity by counting raids and measuring areas of crop damage every week in 17 plantations over 19 weeks in the most elephant-impacted zone of the study area. We found that fruit presence and stage of crop growth led to more intense damage to crops, whereas local deterrents did not inhibit raiding events and crop damage by elephants. We report a tradeoff between non-timber forest products (NTFP) services and crop-raiding by elephants. We show for the first time that steep topography impedes elephant damage to crops with no raids recorded in fields with surrounding slopes greater than 25%. We discuss whether farming on steep fields could be used as a strategy for mitigating crop-raiding to favor human-elephant coexistence and enhance elephant conservation.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Elefantes/fisiologia , Frutas/crescimento & desenvolvimento , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema , Fazendeiros , Florestas , Gabão , Humanos , Parques Recreativos , Árvores/crescimento & desenvolvimento
10.
AoB Plants ; 11(1): ply074, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30697404

RESUMO

Hunting and logging, ubiquitous human disturbances in tropical forests, have the potential to alter the ecological processes that govern population recruitment and community composition. Hunting-induced declines in populations of seed-dispersing animals are expected to reduce dispersal of the tree species that rely on them, resulting in potentially greater distance- and density-dependent mortality. At the same time, selective logging may alter competitive interactions among tree species, releasing remaining trees from light, nutrient or space limitations. Taken together, these disturbances may alter the community composition of tropical forests, with implications for carbon storage, biodiversity conservation and ecosystem function. To evaluate the effects of hunting and logging on tree fecundity and seed dispersal, we use 3 years of seed rain data from a large-scale observational experiment in previously logged, hunted and protected forests in northern Republic of Congo (Brazzaville). We find that low-intensity logging had a meaningful long-term effect on species-specific seed dispersal distances, though the direction and magnitude varied and was not congruent within dispersal vector. Tree fecundity increased with tree diameter, but did not differ appreciably across disturbance regimes. The species-specific dispersal responses to logging in this study point towards the long-lasting toll of disturbance on ecological function and highlight the necessity of conserving intact forest.

11.
Nat Plants ; 5(2): 133-140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664730

RESUMO

Quantifying carbon dynamics in forests is critical for understanding their role in long-term climate regulation1-4. Yet little is known about tree longevity in tropical forests3,5-8, a factor that is vital for estimating carbon persistence3,4. Here we calculate mean carbon age (the period that carbon is fixed in trees7) in different strata of African tropical forests using (1) growth-ring records with a unique timestamp accurately demarcating 66 years of growth in one site and (2) measurements of diameter increments from the African Tropical Rainforest Observation Network (23 sites). We find that in spite of their much smaller size, in understory trees mean carbon age (74 years) is greater than in sub-canopy (54 years) and canopy (57 years) trees and similar to carbon age in emergent trees (66 years). The remarkable carbon longevity in the understory results from slow and aperiodic growth as an adaptation to limited resource availability9-11. Our analysis also reveals that while the understory represents a small share (11%) of the carbon stock12,13, it contributes disproportionally to the forest carbon sink (20%). We conclude that accounting for the diversity of carbon age and carbon sequestration among different forest strata is critical for effective conservation management14-16 and for accurate modelling of carbon cycling4.


Assuntos
Sequestro de Carbono , Carbono/análise , Florestas , Árvores/fisiologia , Ciclo do Carbono , República Democrática do Congo , Fatores de Tempo , Árvores/crescimento & desenvolvimento , Clima Tropical
12.
PLoS One ; 13(7): e0199387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29995886

RESUMO

Poaching of forest elephants (Loxodonta cyclotis) for ivory has decimated their populations in Central Africa. Studying elephant movement can provide insight into habitat and resource use to reveal where, when, and why they move and guide conservation efforts. We fitted 17 forest elephants with global positioning system (GPS) collars in 2015 and 2016 in the tropical forest-grassland mosaic of the Wonga Wongué Presidential Reserve (WW), Gabon. Using the location data, we quantified movement distances, home ranges, and habitat use to examine the environmental drivers of elephant movements and predict where elephants occur spatially and temporally. Forest elephants, on average, traveled 2,840 km annually and had home ranges of 713 km2, with males covering significantly larger home ranges than females. Forest elephants demonstrated both daily and seasonal movement patterns. Daily, they moved between forest and grassland at dawn and dusk. Seasonally, they spent proportionally more time in grassland than forest during the short-wet season when grasses recruit. Forest elephants also traveled faster during the short-wet season when fruit availability was greatest, likely reflecting long, direct movements to preferred fruiting tree species. Forest elephants tended to select areas with high tree and shrub density that afford cover and browse. When villages occurred in their home ranges elephants spent a disproportionate amount of time near them, particularly in the dry season, probably for access to agricultural crops and preferred habitat. Given the importance of the grassland habitat for elephants, maintenance of the forest-grassland matrix is a conservation priority in WW. Law enforcement, outreach, and education should focus on areas of potential human-elephant conflict near villages along the borders of the reserve. GPS-tracking should be extended into multi-use areas in the peripheries of protected areas to evaluate the effects of human disturbance on elephant movements and to maintain connectivity among elephant populations in Gabon.


Assuntos
Migração Animal , Ecossistema , Elefantes , Florestas , Pradaria , Animais , Gabão , Geografia , Comportamento de Retorno ao Território Vital , Estações do Ano
13.
Conserv Biol ; 32(3): 559-567, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29076179

RESUMO

Poaching is rapidly extirpating African forest elephants (Loxodonta cyclotis) from most of their historical range, leaving vast areas of elephant-free tropical forest. Elephants are ecological engineers that create and maintain forest habitat; thus, their loss will have large consequences for the composition and structure of Afrotropical forests. Through a comprehensive literature review, we evaluated the roles of forest elephants in seed dispersal, nutrient recycling, and herbivory and physical damage to predict the cascading ecological effects of their population declines. Loss of seed dispersal by elephants will favor tree species dispersed abiotically and by smaller dispersal agents, and tree species composition will depend on the downstream effects of changes in elephant nutrient cycling and browsing. Loss of trampling and herbivory of seedlings and saplings will result in high tree density with release from browsing pressures. Diminished seed dispersal by elephants and high stem density are likely to reduce the recruitment of large trees and thus increase homogeneity of forest structure and decrease carbon stocks. The loss of ecological services by forest elephants likely means Central African forests will be more like Neotropical forests, from which megafauna were extirpated thousands of years ago. Without intervention, as much as 96% of Central African forests will have modified species composition and structure as elephants are compressed into remaining protected areas. Stopping elephant poaching is an urgent first step to mitigating these effects, but long-term conservation will require land-use planning that incorporates elephant habitat into forested landscapes that are being rapidly transformed by industrial agriculture and logging.


Assuntos
Elefantes , Animais , Conservação dos Recursos Naturais , Ecologia , Ecossistema , Florestas
14.
Curr Biol ; 27(4): R134-R135, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28222286

RESUMO

Elephant populations are in peril everywhere, but forest elephants in Central Africa have sustained alarming losses in the last decade [1]. Large, remote protected areas are thought to best safeguard forest elephants by supporting large populations buffered from habitat fragmentation, edge effects and human pressures. One such area, the Minkébé National Park (MNP), Gabon, was created chiefly for its reputation of harboring a large elephant population. MNP held the highest densities of elephants in Central Africa at the turn of the century, and was considered a critical sanctuary for forest elephants because of its relatively large size and isolation. We assessed population change in the park and its surroundings between 2004 and 2014. Using two independent modeling approaches, we estimated a 78-81% decline in elephant numbers over ten years - a loss of more than 25,000 elephants. While poaching occurs from within Gabon, cross-border poaching largely drove the precipitous drop in elephant numbers. With nearly 50% of forest elephants in Central Africa thought to reside in Gabon [1], their loss from the park is a considerable setback for the preservation of the species.


Assuntos
Conservação dos Recursos Naturais , Elefantes , Florestas , Animais , Gabão , Atividades Humanas , Modelos Biológicos , Dinâmica Populacional
15.
Glob Chang Biol ; 23(4): 1648-1660, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27500502

RESUMO

Deadwood is a major component of aboveground biomass (AGB) in tropical forests and is important as habitat and for nutrient cycling and carbon storage. With deforestation and degradation taking place throughout the tropics, improved understanding of the magnitude and spatial variation in deadwood is vital for the development of regional and global carbon budgets. However, this potentially important carbon pool is poorly quantified in Afrotropical forests and the regional drivers of deadwood stocks are unknown. In the first large-scale study of deadwood in Central Africa, we quantified stocks in 47 forest sites across Gabon and evaluated the effects of disturbance (logging), forest structure variables (live AGB, wood density, abundance of large trees), and abiotic variables (temperature, precipitation, seasonality). Average deadwood stocks (measured as necromass, the biomass of deadwood) were 65 Mg ha-1 or 23% of live AGB. Deadwood stocks varied spatially with disturbance and forest structure, but not abiotic variables. Deadwood stocks increased significantly with logging (+38 Mg ha-1 ) and the abundance of large trees (+2.4 Mg ha-1 for every tree >60 cm dbh). Gabon holds 0.74 Pg C, or 21% of total aboveground carbon in deadwood, a threefold increase over previous estimates. Importantly, deadwood densities in Gabon are comparable to those in the Neotropics and respond similarly to logging, but represent a lower proportion of live AGB (median of 18% in Gabon compared to 26% in the Neotropics). In forest carbon accounting, necromass is often assumed to be a constant proportion (9%) of biomass, but in humid tropical forests this ratio varies from 2% in undisturbed forest to 300% in logged forest. Because logging significantly increases the deadwood carbon pool, estimates of tropical forest carbon should at a minimum use different ratios for logged (mean of 30%) and unlogged forests (mean of 18%).


Assuntos
Agricultura Florestal , Florestas , Biomassa , Carbono , Gabão , Árvores , Clima Tropical
16.
PLoS One ; 11(5): e0155690, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27196059

RESUMO

In Gabon, like elsewhere in Africa, crops are often sources of conflict between humans and wildlife. Wildlife damage to crops can drastically reduce income, amplifying poverty and creating a negative perception of wild animal conservation among rural people. In this context, crop-raiding animals like elephants quickly become "problem animals". To deter elephants from raiding crops beehives have been successfully employed in East Africa; however, this method has not yet been tested in Central Africa. We experimentally examined whether the presence of Apis mellifera adansonii, the African honey bee species present in Central Africa, deters forest elephants (Loxodonta Africana cyclotis) from feeding on fruit trees. We show for the first time that the effectiveness of beehives as deterrents of elephants is related to bee activity. Empty hives and those housing colonies of low bee activity do not deter elephants all the time; but beehives with high bee activity do. Although elephant disturbance of hives does not impede honey production, there is a tradeoff between deterrence and the quantity of honey produced. To best achieve the dual goals of deterring elephants and producing honey colonies must maintain an optimum activity level of 40 to 60 bee movements per minute. Thus, beehives colonized by Apis mellifera adansonii bees can be effective elephant deterrents, but people must actively manage hives to maintain bee colonies at the optimum activity level.


Assuntos
Abelhas/fisiologia , Elefantes/fisiologia , Animais , Conservação dos Recursos Naturais , Produtos Agrícolas , Gabão , Modelos Lineares , Chuva , Temperatura
17.
Philos Trans R Soc Lond B Biol Sci ; 368(1625): 20120295, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23878327

RESUMO

We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha⁻¹ (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha⁻¹) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha⁻¹ greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus-AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes.


Assuntos
Árvores , Clima Tropical , África , Biomassa , Ciclo do Carbono , Mudança Climática , Conservação dos Recursos Naturais , Modelos Biológicos , Solo , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
18.
PLoS One ; 8(5): e63330, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691023

RESUMO

Quantifying the relative importance of the multiple processes that limit recruitment may hold the key to understanding tropical tree diversity. Here we couple theoretical models with a large-scale, multi-species seed-sowing experiment to assess the degree to which seed and establishment limitation shape patterns of tropical tree seedling recruitment in a central African forest. Of five randomly selected species (Pancovia laurentii, Staudtia kamerunensis, Manilkara mabokeensis, Myrianthus arboreas, and Entandophragma utile), seedling establishment and survival were low (means of 16% and 6% at 3 and 24 months, respectively), and seedling density increased with seed augmentation. Seedling recruitment was best explained by species identity and the interaction of site-by-species, suggesting recruitment probabilities vary among species and sites, and supporting the role of niche-based mechanisms. Although seed augmentation enhanced initial seedling density, environmental filtering and post-establishment mortality strongly limited seedling recruitment. The relative importance of seed and establishment limitation changed with seed and seedling density and through time. The arrival of seeds most strongly affected local recruitment when seeds were nearly absent from a site (∼ 1 seed m(2)), but was also important when seeds arrived in extremely high densities, overwhelming niche-based mortality factors. The strength of seed limitation and density-independent mortality decreased significantly over time, while density-dependent mortality showed the opposite trend. The varying strengths of seed and establishment limitation as a function of juvenile density and time emphasize the need to evaluate their roles through later stages of a tree's life cycle.


Assuntos
Dispersão de Sementes , Sementes/fisiologia , Árvores/fisiologia , África , Fenômenos Ecológicos e Ambientais , Modelos Estatísticos
19.
New Phytol ; 198(1): 252-263, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23316750

RESUMO

Most plant species have a range of traits that deter herbivores. However, understanding of how different defences are related to one another is surprisingly weak. Many authors argue that defence traits trade off against one another, while others argue that they form coordinated defence syndromes. We collected a dataset of unprecedented taxonomic and geographic scope (261 species spanning 80 families, from 75 sites across the globe) to investigate relationships among four chemical and six physical defences. Five of the 45 pairwise correlations between defence traits were significant and three of these were tradeoffs. The relationship between species' overall chemical and physical defence levels was marginally nonsignificant (P = 0.08), and remained nonsignificant after accounting for phylogeny, growth form and abundance. Neither categorical principal component analysis (PCA) nor hierarchical cluster analysis supported the idea that species displayed defence syndromes. Our results do not support arguments for tradeoffs or for coordinated defence syndromes. Rather, plants display a range of combinations of defence traits. We suggest this lack of consistent defence syndromes may be adaptive, resulting from selective pressure to deploy a different combination of defences to coexisting species.


Assuntos
Plantas/química , Plantas/imunologia , Análise por Conglomerados , Análise de Componente Principal , Característica Quantitativa Herdável
20.
Ecology ; 93(3): 500-10, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22624205

RESUMO

The loss of animals in tropical forests may alter seed dispersal patterns and reduce seedling recruitment of tree species, but direct experimental evidence is scarce. We manipulated dispersal patterns of Manilkara mabokeensis, a monkey-dispersed tree, to assess the extent to which spatial distributions of seeds drive seedling recruitment. Based on the natural seed shadow, we created seed distributions with seeds deposited under the canopy ("no dispersal"), with declining density from the tree ("natural dispersal"), and at uniform densities ("good dispersal"). These distributions mimicked dispersal patterns that could occur with the extirpation of monkeys, low levels of hunting, and high rates of seed dispersal. We monitored seedling emergence and survival for 18 months and recorded the number of leaves and damage to leaves. "Good dispersal" increased seedling survival by 26%, and "no dispersal" decreased survival by 78%, relative to "natural dispersal." Using a mixed-effects survival model, we decoupled the distance and density components of the seed shadow: seedling survival depended on the seed density, but not on the distance from the tree. Although community seedling diversity tended to decrease with longer dispersal distances, we found no conclusive evidence that patterns of seed dispersal influence the diversity of the seedling community. Local seed dispersal does affect seedling recruitment and survival, with better dispersal resulting in higher seedling recruitment; hence the loss of dispersal services that comes with the reduction or extirpation of seed dispersers will decrease regeneration of some tree species.


Assuntos
Ecossistema , Manilkara/fisiologia , Sementes/fisiologia , Animais , Congo , Demografia , Frutas , Haplorrinos , Plântula , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA