Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 17300, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453079

RESUMO

The presence or absence of autoantibodies against citrullinated proteins (ACPAs) distinguishes two main groups of rheumatoid arthritis (RA) patients with different etiologies, prognoses, disease severities, and, presumably, disease pathogenesis. The heterogeneous responses of RA patients to various biologics, even among ACPA-positive patients, emphasize the need for further stratification of the patients. We used high-density protein array technology for fingerprinting of ACPA reactivity. Identification of the proteome recognized by ACPAs may be a step to stratify RA patients according to immune reactivity. Pooled plasma samples from 10 anti-CCP-negative and 15 anti-CCP-positive RA patients were assessed for ACPA content using a modified protein microarray containing 1631 different natively folded proteins citrullinated in situ by protein arginine deiminases (PADs) 2 and PAD4. IgG antibodies from anti-CCP-positive RA plasma showed high-intensity binding to 87 proteins citrullinated by PAD2 and 99 proteins citrullinated by PAD4 without binding significantly to the corresponding native proteins. Curiously, the binding of IgG antibodies in anti-CCP-negative plasma was also enhanced by PAD2- and PAD4-mediated citrullination of 29 and 26 proteins, respectively. For only four proteins, significantly more ACPA binding occurred after citrullination with PAD2 compared to citrullination with PAD4, while the opposite was true for one protein. We demonstrate that PAD2 and PAD4 are equally efficient in generating citrullinated autoantigens recognized by ACPAs. Patterns of proteins recognized by ACPAs may serve as a future diagnostic tool for further subtyping of RA patients.


Assuntos
Anticorpos Antiproteína Citrulinada/imunologia , Artrite Reumatoide/imunologia , Autoantígenos/imunologia , Citrulina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoantígenos/sangue , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Citrulinação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Serial de Proteínas , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Espectrometria de Massas em Tandem
2.
J Alzheimers Dis ; 79(1): 249-265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252074

RESUMO

BACKGROUND: Alzheimer's disease (AD) is characterized by accumulation of amyloid-ß (Aß) species and deposition of senile plaques (SPs). Clinical trials with the anti-Aß antibody aducanumab have been completed recently. OBJECTIVE: To characterize the proteomic profile of SPs and surrounding tissue in a mouse model of AD in 10-month-old tgAPPPS1-21 mice after chronic treatment with aducanumab for four months with weekly dosing (10 mg/kg). METHODS: After observing significant reduction of SP numbers in hippocampi of aducanumab-treated mice, we applied a localized proteomic analysis by combining laser microdissection and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the remaining SPs in hippocampi. We microdissected three subregions, containing SPs, SP penumbra level 1, and an additional penumbra level 2 to follow the proteomic profile as gradient. RESULTS: In the aducanumab-treated mice, we identified 17 significantly regulated proteins that were associated with 1) mitochondria and metabolism (ACAT2, ATP5J, ETFA, EXOG, HK1, NDUFA4, NDUFS7, PLCB1, PPP2R4), 2) cytoskeleton and axons (ADD1, CAPZB, DPYSL3, MAG), 3) stress response (HIST1H1C/HIST1H1D, HSPA12A), and 4) AßPP trafficking/processing (CD81, GDI2). These pathways and some of the identified proteins are implicated in AD pathogenesis. Proteins associated with mitochondria and metabolism were mainly upregulated while proteins associated with AßPP trafficking/processing and stress response pathways were mainly downregulated, suggesting that aducanumab could lead to a beneficial proteomic profile around SPs in tgAPPPS1-21 mice. CONCLUSION: We identified novel proteomic patterns of SPs and surrounding tissue indicating that chronic treatment with aducanumab could inhibit Aß toxicity and increase phagocytosis and cell viability.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Encéfalo/efeitos dos fármacos , Placa Amiloide/metabolismo , Proteoma/efeitos dos fármacos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Cromatografia Líquida , Proteínas do Citoesqueleto/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Presenilina-1/genética , Transporte Proteico/efeitos dos fármacos , Proteômica , Estresse Fisiológico/efeitos dos fármacos , Espectrometria de Massas em Tandem
3.
Expert Rev Mol Diagn ; 20(12): 1183-1198, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315478

RESUMO

INTRODUCTION: The development of companion diagnostics (CDx) will increase efficacy and cost-benefit markedly, compared to the currently prevailing trial-and-error approach for treatment. Recent improvements in high-throughput protein technology have resulted in large amounts of predictive biomarkers that are potentially useful components of future CDx assays. Current high multiplex protein arrays are suitable for discovery-based approaches, while low-density and more simple arrays are suitable for use in point-of-care facilities. AREA COVERED: This review discusses the technical platforms available for protein array focused CDx, explains the technical details of the platforms and provide examples of clinical use, ranging from multiplex arrays to low-density clinically applicable arrays. We thereafter highlight recent predictive biomarkers within different disease areas, such as oncology and autoimmune diseases. Lastly, we discuss some of the challenges connected to the implementation of CDx assays as point-of-care tests. EXPERT OPINION: Recent advances in the field of protein arrays have enabled high-density arrays permitting large biomarker discovery studies, which are beneficial for future CDx assays. The density of protein arrays range from a single protein to proteome-wide arrays, allowing the discovery of protein signatures that may correlate with drug response. Protein arrays will undoubtedly play a key role in future CDx assays.


Assuntos
Biomarcadores , Técnicas de Diagnóstico Molecular/métodos , Medicina de Precisão/métodos , Análise Serial de Proteínas/métodos , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Gerenciamento Clínico , Ensaios de Triagem em Larga Escala , Humanos , Técnicas de Diagnóstico Molecular/normas , Testes Imediatos , Medicina de Precisão/normas , Análise Serial de Proteínas/normas
4.
Biomedicines ; 8(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486012

RESUMO

The majority of patients diagnosed with rheumatoid arthritis (RA) have developed autoantibodies against neoepitopes in proteins that have undergone post-translational modification, e.g., citrullination or carbamylation. There is growing evidence of their molecular relevance and their potential utility to improve diagnosis, patient stratification, and prognosis for precision medicine. Autoantibodies reacting to native proteins may also have a role in RA pathogenesis, however, their reactivity patterns remain much less studied. We hypothesized that a high-density protein array technology could shed light onto the normal and disease-related autoantibodies produced in healthy and RA patient subgroups. In an exploratory study, we investigated the global reactivity of autoantibodies in plasma pools from 15 anti-cyclic citrullinated peptide (CCP)-positive and 10 anti-CCP-negative RA patients and 10 healthy donors against more than 1600 native and unmodified human proteins using a high-density protein array. A total of 102 proteins recognized by IgG autoantibodies were identified, hereof 86 were recognized by antibodies from CCP-positive RA patients and 76 from anti-CCP-negative RA patients, but not by antibodies from healthy donors. Twenty-four of the identified autoantigens have previously been identified in synovial fluid. Multiple human proteins in their native conformation are recognized by autoantibodies from anti-CCP-positive as well as anti-CCP-negative RA patients.

5.
Mol Immunol ; 103: 257-269, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30326359

RESUMO

Monocytes are key mediators of innate immunity and comprise an important cellular defence against invading pathogens. However, exaggerated or dysregulated monocyte activation can lead to severe immune-mediated pathology such as sepsis or chronic inflammatory diseases. Thus, detailed insight into the molecular mechanisms of monocyte activation is essential to understand monocyte-driven inflammatory pathologies. We therefore investigated the global protein changes in human monocytes during lipopolysaccharide (LPS) activation to mimic bacterial activation. Purified human monocytes were stimulated with LPS for 17 h and analyzed by state-of-the-art liquid chromatography tandem mass spectrometry (LC-MS/MS). The label-free quantitative proteome analysis identified 2746 quantifiable proteins of which 101 had a statistically significantly different abundance between LPS-stimulated cells and unstimulated controls. Additionally, 143 proteins were exclusively identified in either LPS stimulated cells or unstimulated controls. Functional annotation clustering demonstrated that LPS, most significantly, regulates proteasomal- and lysosomal proteins but in opposite directions. Thus, seven proteasome subunits were upregulated by LPS while 11 lysosomal proteins were downregulated. Both systems are critically involved in processing of proteins for antigen-presentation and together with LPS-induced regulation of CD74 and tapasin, our data suggest that LPS can skew monocytic antigen-presentation towards MHC class I rather than MHC class II. In summary, this study provides a sensitive high throughput protein analysis of LPS-induced monocyte activation and identifies several LPS-regulated proteins not previously described in the literature which can be used as a source for future studies.


Assuntos
Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Proteoma/imunologia , Proteômica/métodos , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Cromatografia Líquida , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA