Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(4): 1188-1199, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484338

RESUMO

Organisms respond to dietary and environmental challenges by altering the molecular composition of their glycerolipids and glycerophospholipids (GPLs), which may favorably adjust the physicochemical properties of lipid membranes. However, how lipidome changes affect the membrane proteome and, eventually, the physiology of specific organs is an open question. We addressed this issue in Drosophila melanogaster, which is not able to synthesize sterols and polyunsaturated fatty acids but can acquire them from food. We developed a series of semisynthetic foods to manipulate the length and unsaturation of fatty acid moieties in GPLs and singled out proteins whose abundance is specifically affected by membrane lipid unsaturation in the Drosophila eye. Unexpectedly, we identified a group of proteins that have muscle-related functions and increased their abundances under unsaturated eye lipidome conditions. In contrast, the abundance of two stress response proteins, Turandot A and Smg5, is decreased by lipid unsaturation. Our findings could guide the genetic dissection of homeostatic mechanisms that maintain visual function when the eye is exposed to environmental and dietary challenges.


Assuntos
Drosophila , Proteoma , Animais , Proteoma/genética , Drosophila melanogaster/genética , Lipidômica , Ácidos Graxos , Glicerofosfolipídeos
2.
Proteomics ; : e2300330, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963819

RESUMO

Drosophila melanogaster is a popular model organism to elucidate the molecular mechanisms that underlie the structure and function of the eye as well as the causes of retinopathies, aging, light-induced damage, or dietary deficiencies. Large-scale screens have isolated genes whose mutation causes morphological and functional ocular defects, which led to the discovery of key components of the phototransduction cascade. However, the proteome of the Drosophila eye is poorly characterized. Here, we used GeLC-MS/MS to quantify 3516 proteins, including the absolute (molar) quantities of 43 proteins in the eye of adult male Drosophila reared on standard laboratory food. This work provides a generic and expandable resource for further genetic, pharmacological, and dietary studies.

3.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214967

RESUMO

While the proteome of an organism is largely determined by the genome, the lipidome is shaped by a poorly understood interplay of environmental factors and metabolic processes. To gain insights into the underlying mechanisms, we analyzed the impacts of dietary lipid manipulations on the ocular proteome of Drosophila melanogaster . We manipulated the lipidome with synthetic food media that differed in the supplementation of an equal amount of saturated or polyunsaturated triacylglycerols. This allowed us to generate flies whose eyes had a highly contrasting length and unsaturation of glycerophospholipids, the major lipid class of biological membranes, while the abundance of other membrane lipid classes remained unchanged. By bioinformatically comparing the resulting ocular proteomic trends and contrasting them with the impacts of vitamin A deficiency, we identified ocular proteins whose abundances are differentially affected by lipid saturation and unsaturation. For instance, we unexpectedly identified a group of proteins that have muscle-related functions and increase their abundances in the eye upon lipidome unsaturation but are unaffected by lipidome saturation. Moreover, we identified two differentially lipid-responsive proteins involved in stress responses, Turandot A and Smg5, whose abundances decrease with lipid unsaturation. Lastly, we discovered that the ocular lipid class composition is robust to dietary changes and propose that this may be a general homeostatic feature of the organization of eukaryotic tissues, while the length and unsaturation of fatty acid moieties is more variable to compensate environmental challenges. We anticipate that these insights into the molecular responses of the Drosophila eye proteome to specific lipid manipulations will guide the genetic dissection of the mechanisms that maintain visual function when the eye is exposed to dietary challenges.

4.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945598

RESUMO

The Drosophila melanogaster eye is a popular model to elucidate the molecular mechanisms that underlie the structure and function of the eye as well as the causes of retinopathies. For instance, the Drosophila eye has been used to investigate the impacts of ageing and environmental stresses such as light-induced damage or dietary deficiencies. Moreover, large-scale screens have isolated genes whose mutation causes morphological and functional ocular defects, which includes key components of the phototransduction cascade. However, the proteome of the Drosophila eye is poorly characterized. Here, we used GeLC-MS/MS to quantify 3516 proteins he adult Drosophila melanogaster eye and provide a generic and expandable resource for further genetic, pharmacological, and dietary studies.

5.
Biomolecules ; 12(8)2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-36008977

RESUMO

The requirement of vitamin A for the synthesis of the visual chromophore and the light-sensing pigments has been studied in vertebrate and invertebrate model organisms. To identify the molecular mechanisms that orchestrate the ocular response to vitamin A deprivation, we took advantage of the fact that Drosophila melanogaster predominantly requires vitamin A for vision, but not for development or survival. We analyzed the impacts of vitamin A deficiency on the morphology, the lipidome, and the proteome of the Drosophila eye. We found that chronic vitamin A deprivation damaged the light-sensing compartments and caused a dramatic loss of visual pigments, but also decreased the molar abundance of most phototransduction proteins that amplify and transduce the visual signal. Unexpectedly, vitamin A deficiency also decreased the abundances of specific subunits of mitochondrial TCA cycle and respiratory chain components but increased the levels of cuticle- and lens-related proteins. In contrast, we found no apparent effects of vitamin A deficiency on the ocular lipidome. In summary, chronic vitamin A deficiency decreases the levels of most components of the visual signaling pathway, but also affects molecular pathways that are not vision-specific and whose mechanistic connection to vitamin A remains to be elucidated.


Assuntos
Proteínas de Drosophila , Deficiência de Vitamina A , Animais , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster , Transdução de Sinal Luminoso/fisiologia , Proteoma , Vitamina A
6.
Cancer Discov ; 12(9): 2180-2197, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35771492

RESUMO

Pancreatic ductal adenocarcinomas (PDAC) depend on autophagy for survival; however, the metabolic substrates that autophagy provides to drive PDAC progression are unclear. Ferritin, the cellular iron storage complex, is targeted for lysosomal degradation (ferritinophagy) by the selective autophagy adaptor NCOA4, resulting in release of iron for cellular utilization. Using patient-derived and murine models of PDAC, we demonstrate that ferritinophagy is upregulated in PDAC to sustain iron availability, thereby promoting tumor progression. Quantitative proteomics reveals that ferritinophagy fuels iron-sulfur cluster protein synthesis to support mitochondrial homeostasis. Targeting NCOA4 leads to tumor growth delay and prolonged survival but with the development of compensatory iron acquisition pathways. Finally, enhanced ferritinophagy accelerates PDAC tumorigenesis, and an elevated ferritinophagy expression signature predicts for poor prognosis in patients with PDAC. Together, our data reveal that the maintenance of iron homeostasis is a critical function of PDAC autophagy, and we define NCOA4-mediated ferritinophagy as a therapeutic target in PDAC. SIGNIFICANCE: Autophagy and iron metabolism are metabolic dependencies in PDAC. However, targeted therapies for these pathways are lacking. We identify NCOA4-mediated selective autophagy of ferritin ("ferritinophagy") as upregulated in PDAC. Ferritinophagy supports PDAC iron metabolism and thereby tumor progression and represents a new therapeutic target in PDAC. See related commentary by Jain and Amaravadi, p. 2023. See related article by Ravichandran et al., p. 2198. This article is highlighted in the In This Issue feature, p. 2007.


Assuntos
Carcinoma Ductal Pancreático , Proteínas Ferro-Enxofre , Neoplasias Pancreáticas , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Disponibilidade Biológica , Carcinoma Ductal Pancreático/genética , Ferritinas/genética , Ferritinas/metabolismo , Humanos , Ferro/metabolismo , Ferro/farmacologia , Proteínas Ferro-Enxofre/metabolismo , Camundongos , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Neoplasias Pancreáticas/genética , Enxofre/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas
7.
PLoS Genet ; 17(6): e1009613, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161320

RESUMO

Color vision in Drosophila melanogaster is based on the expression of five different color-sensing Rhodopsin proteins in distinct subtypes of photoreceptor neurons. Promoter regions of less than 300 base pairs are sufficient to reproduce the unique, photoreceptor subtype-specific rhodopsin expression patterns. The underlying cis-regulatory logic remains poorly understood, but it has been proposed that the rhodopsin promoters have a bipartite structure: the distal promoter region directs the highly restricted expression in a specific photoreceptor subtype, while the proximal core promoter region provides general activation in all photoreceptors. Here, we investigate whether the rhodopsin promoters exhibit a strict specialization of their distal (subtype specificity) and proximal (general activation) promoter regions, or if both promoter regions contribute to generating the photoreceptor subtype-specific expression pattern. To distinguish between these two models, we analyze the expression patterns of a set of hybrid promoters that combine the distal promoter region of one rhodopsin with the proximal core promoter region of another rhodopsin. We find that the function of the proximal core promoter regions extends beyond providing general activation: these regions play a previously underappreciated role in generating the non-overlapping expression patterns of the different rhodopsins. Therefore, cis-regulatory motifs in both the distal and the proximal core promoter regions recruit transcription factors that generate the unique rhodopsin patterns in a combinatorial manner. We compare this combinatorial regulatory logic to the regulatory logic of olfactory receptor genes and discuss potential implications for the evolution of rhodopsins.


Assuntos
Visão de Cores/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Regiões Promotoras Genéticas , Rodopsina/genética , Fatores de Transcrição/genética , Animais , Sequência de Bases , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Fotorreceptoras de Invertebrados/classificação , Células Fotorreceptoras de Invertebrados/citologia , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rodopsina/metabolismo , Fatores de Transcrição/metabolismo
8.
Dev Biol ; 476: 68-78, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33774009

RESUMO

Vitamin A deficiency can cause human pathologies that range from blindness to embryonic malformations. This diversity is due to the lack of two major vitamin A metabolites with very different functions: the chromophore 11-cis-retinal (vitamin A aldehyde) is a critical component of the visual pigment that mediates phototransduction, while the signaling molecule all-trans-retinoic acid regulates the development of various tissues and is required for the function of the immune system. Since animals cannot synthesize vitamin A de novo, they must obtain it either as preformed vitamin A from animal products or as carotenoid precursors from plant sources. Due to its essential role in the visual system, acute vitamin A deprivation impairs photoreceptor function and causes night blindness (poor vision under dim light conditions), while chronic deprivation results in retinal dystrophies and photoreceptor cell death. Chronic vitamin A deficiency is the leading cause of preventable childhood blindness according to the World Health Organization. Due to the requirement of vitamin A for retinoic acid signaling in development and in the immune system, vitamin A deficiency also causes increased mortality in children and pregnant women in developing countries. Drosophila melanogaster is an excellent model to study the effects of vitamin A deprivation on the eye because vitamin A is not essential for Drosophila development and chronic deficiency does not cause lethality. Moreover, genetic screens in Drosophila have identified evolutionarily conserved factors that mediate the production of vitamin A and its cellular uptake. Here, we review our current knowledge about the role of vitamin A in the visual system of mammals and Drosophila melanogaster. We compare the molecular mechanisms that mediate the uptake of dietary vitamin A precursors and the metabolism of vitamin A, as well as the consequences of vitamin A deficiency for the structure and function of the eye.


Assuntos
Visão Ocular/fisiologia , Deficiência de Vitamina A/fisiopatologia , Vitamina A/metabolismo , Animais , Drosophila melanogaster/metabolismo , Mamíferos/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/metabolismo , Tretinoína/metabolismo , Percepção Visual/fisiologia , Vitamina A/fisiologia , Deficiência de Vitamina A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA