Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(3): e14239, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950575

RESUMO

This current work expresses numerical simulation of forced turbulent flow convection in a grooved cylinder. Rectangular grooves with a spacing of A = 1, A = 1.1, and A = 1.3, and groove depth to cylinder diameter of e/D = 0.1 and 0.2 were considered. This research concentrates on the effect of groove depth, location of the grooves and CuO nanoparticles on the heat transfer for Reynolds numbers 10000, 12,500, 15,000 and 17,500 in volume fractions of 0, 1, 2, 3 and 4% of nanoparticles. Results show that grooves improve heat transfer. This behavior at a lower A ratio results in a significant Nu number increase so that the highest Nu number occurs for A ratio of 1, 1.1 and 1.3. Increasing e/D ratio, due to increasing the channel section in this area, results in loss of velocity and dissipation of flow momentum, resulting in lower convective heat transfer and lower Nu number. Changing the pitch for e/D = 0.1 results in a 1.1 to 1.6 times increase of Nu number compared with the smooth channel, and for e/D = 0.2 this value is 1.1-1.5 times the smooth channel for similar Re, φ and geometry. Changing groove pitch at e/D = 0.1 results in a 2.1-2.9 times increase in friction factor compared with the smooth channel in similar conditions. For e/D = 0.2, this increase is 1.8-2.8 times the smooth channel. In low Re, the thermal performance is higher than in higher velocities. This is because the grooved channel acts as a smooth channel at high Re, and the average Nu does not have significant growth.

2.
Phys Fluids (1994) ; 33(10): 101302, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34803360

RESUMO

Recently, the COVID-19 virus pandemic has led to many studies on the airborne transmission of expiratory droplets. While limited experiments and on-site measurements offer qualitative indication of potential virus spread rates and the level of transmission risk, the quantitative understanding and mechanistic insights also indispensably come from careful theoretical modeling and numerical simulation efforts around which a surge of research papers has emerged. However, due to the highly interdisciplinary nature of the topic, numerical simulations of the airborne spread of expiratory droplets face serious challenges. It is essential to examine the assumptions and simplifications made in the existing modeling and simulations, which will be reviewed carefully here to better advance the fidelity of numerical results when compared to the reality. So far, existing review papers have focused on discussing the simulation results without questioning or comparing the model assumptions. This review paper focuses instead on the details of the model simplifications used in the numerical methods and how to properly incorporate important processes associated with respiratory droplet transmission. Specifically, the critical issues reviewed here include modeling of the respiratory droplet evaporation, droplet size distribution, and time-dependent velocity profile of air exhaled from coughing and sneezing. According to the literature review, another problem in numerical simulations is that the virus decay rate and suspended viable viral dose are often not incorporated; therefore here, empirical relationships for the bioactivity of coronavirus are presented. It is hoped that this paper can assist researchers to significantly improve their model fidelity when simulating respiratory droplet transmission.

3.
Sci Rep ; 10(1): 21436, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293612

RESUMO

Thermal management of power electronics (PE) systems is a long-lasting challenge in their industrial applications. It is important to provide a uniform temperature distribution on the surface of the insulated gate bipolar transistors and diodes. The thermal management of a PE module is the main objective of the present study. The flow characteristics and the effects of the constructal theory on the heat transfer performance of the cooling system have been numerically investigated. The governing equations have been discretized using the finite volume method, and validation has been done to make sure the results are reliable. The effects of different channels configurations on decreasing the chips' temperature and uniform temperature distribution on the chips' surface have been studied. The flow characteristics and heat transfer performance at different mass flow rates for different channel configurations have been studied by presenting the results of the average chips' temperature, Nusselt (Nu) number, pressure loss, and standard temperature deviation. Moreover, different temperature distribution contours have been presented to show the performance of different configurations. The results revealed that by changing the channels' configuration from the conventional straight channel to leaf-inspired channels (case B and C), the cooling performance is improved.

4.
Sci Rep ; 10(1): 7243, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350382

RESUMO

Using single layer microchannels accompanied by nanofluids is one of the most practical solutions in thermal management of high power density devices. The main challenge in cooling systems of electronic devices is to provide a uniform temperature distribution. In the present study, fluid flow and heat transfer in a fractal microchannel heatsink have been simulated employing the computational fluid dynamics (CFD) method. The fractal microchannel is used to achieve uniform temperature distribution. Thermal performance of single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) dispersed in the two base fluids of water and kerosene in a fractal microchannel at Reynolds (Re) numbers of 1500 to 3000 are investigated. It should be noted that the nanofluids have been simulated by the two-phase mixture model. The results indicated that the use of fractals silicon microchannel leads to having a uniform temperature distribution. Based on the results, at maximum Re number when the working fluid is water, Nu number and pumping power are 20.9 and 0.033 W whereas, in kerosene flow at the same condition, Nu number and pumping power are 6 and 0.054 W, respectively. According to the obtained results, using the SWCNT nanoparticle compared with the MWCNT nanoparticle leads to a significant enhancement in the Nusselt (Nu) number. This difference is more pronounced by increasing the Re number and nanoparticle volume fraction. In addition, the results indicated that at the same Re number and nanoparticle volume fraction, the performance evaluation criterion of the water-based nanofluid is 4 times higher than that of the kerosene-based nanofluid. So the use of the water as the working fluid with the SWCNT nanoparticle for cooling in the fractal silicon microchannel is recommended.

5.
Ultrason Sonochem ; 58: 104701, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450312

RESUMO

The most crucial step towards conducting experimental studies on thermophysical properties and heat transfer of nanofluids is, undoubtedly, the preparation step. It is known that good dispersion of nanoparticles into the base fluids leads to having long-time stable nanofluids, which result in having higher thermal conductivity enhancement and lower viscosity increase. Ultrasonic treatment is one of the most effective techniques to break down the large clusters of nanoparticles into the smaller clusters or even individual nanoparticles. The present review aims to summarize the recently published literature on the effects of various ultrasonication parameters on stability and thermal properties of various nanofluids. The most common methods to characterize the dispersion quality and stability of the nanofluids have been presented and discussed. It is found that increasing the ultrasonication time and power results in having more dispersed and stable nanofluids. Moreover, increasing the ultrasonication time and power leads to having higher thermal conductivity and heat transfer enhancement, lower viscosity increase, and lower pressure drop. However, there are some exceptional cases in which increasing the ultrasonication time and power deteriorated the stability and thermophysical properties of some nanofluids. It is also found that employing the ultrasonic horn/probe devices are much more effective than ultrasonic bath devices; lower ultrasonication time and power leads to better results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA