Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 38(12): 2257-2263, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28982793

RESUMO

BACKGROUND AND PURPOSE: Photon-counting detectors offer the potential for improved image quality for brain CT but have not yet been evaluated in vivo. The purpose of this study was to compare photon-counting detector CT with conventional energy-integrating detector CT for human brains. MATERIALS AND METHODS: Radiation dose-matched energy-integrating detector and photon-counting detector head CT scans were acquired with standardized protocols (tube voltage/current, 120 kV(peak)/370 mAs) in both an anthropomorphic head phantom and 21 human asymptomatic volunteers (mean age, 58.9 ± 8.5 years). Photon-counting detector thresholds were 22 and 52 keV (low-energy bin, 22-52 keV; high-energy bin, 52-120 keV). Image noise, gray matter, and white matter signal-to-noise ratios and GM-WM contrast and contrast-to-noise ratios were measured. Image quality was scored by 2 neuroradiologists blinded to the CT detector type. Reproducibility was assessed with the intraclass correlation coefficient. Energy-integrating detector and photon-counting detector CT images were compared using a paired t test and the Wilcoxon signed rank test. RESULTS: Photon-counting detector CT images received higher reader scores for GM-WM differentiation with lower image noise (all P < .001). Intrareader and interreader reproducibility was excellent (intraclass correlation coefficient, ≥0.86 and 0.79, respectively). Quantitative analysis showed 12.8%-20.6% less image noise for photon-counting detector CT. The SNR of photon-counting detector CT was 19.0%-20.0% higher than of energy-integrating detector CT for GM and WM. The contrast-to-noise ratio of photon-counting detector CT was 15.7% higher for GM-WM contrast and 33.3% higher for GM-WM contrast-to-noise ratio. CONCLUSIONS: Photon-counting detector brain CT scans demonstrated greater gray-white matter contrast compared with conventional CT. This was due to both higher soft-tissue contrast and lower image noise for photon-counting CT.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Fótons , Reprodutibilidade dos Testes , Razão Sinal-Ruído
2.
Phys Med Biol ; 61(5): 1986-2002, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26894795

RESUMO

Characterization of anatomical change and other differences is important in sequential computed tomography (CT) imaging, where a high-fidelity patient-specific prior image is typically present, but is not used, in the reconstruction of subsequent anatomical states. Here, we introduce a penalized likelihood (PL) method called reconstruction of difference (RoD) to directly reconstruct a difference image volume using both the current projection data and the (unregistered) prior image integrated into the forward model for the measurement data. The algorithm utilizes an alternating minimization to find both the registration and reconstruction estimates. This formulation allows direct control over the image properties of the difference image, permitting regularization strategies that inhibit noise and structural differences due to inconsistencies between the prior image and the current data. Additionally, if the change is known to be local, RoD allows local acquisition and reconstruction, as opposed to traditional model-based approaches that require a full support field of view (or other modifications). We compared the performance of RoD to a standard PL algorithm, in simulation studies and using test-bench cone-beam CT data. The performances of local and global RoD approaches were similar, with local RoD providing a significant computational speedup. In comparison across a range of data with differing fidelity, the local RoD approach consistently showed lower error (with respect to a truth image) than PL in both noisy data and sparsely sampled projection scenarios. In a study of the prior image registration performance of RoD, a clinically reasonable capture ranges were demonstrated. Lastly, the registration algorithm had a broad capture range and the error for reconstruction of CT data was 35% and 20% less than filtered back-projection for RoD and PL, respectively. The RoD has potential for delivering high-quality difference images in a range of sequential clinical scenarios including image-guided surgeries and treatments where accurate and quantitative assessments of anatomical change is desired.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imagens de Fantasmas , Humanos , Funções Verossimilhança
3.
Med Image Anal ; 16(1): 339-50, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22000567

RESUMO

Image registration has been proposed as an automatic method for recovering cardiac displacement fields from tagged Magnetic Resonance Imaging (tMRI) sequences. Initially performed as a set of pairwise registrations, these techniques have evolved to the use of 3D+t deformation models, requiring metrics of joint image alignment (JA). However, only linear combinations of cost functions defined with respect to the first frame have been used. In this paper, we have applied k-Nearest Neighbors Graphs (kNNG) estimators of the α-entropy (H(α)) to measure the joint similarity between frames, and to combine the information provided by different cardiac views in an unified metric. Experiments performed on six subjects showed a significantly higher accuracy (p<0.05) with respect to a standard pairwise alignment (PA) approach in terms of mean positional error and variance with respect to manually placed landmarks. The developed method was used to study strains in patients with myocardial infarction, showing a consistency between strain, infarction location, and coronary occlusion. This paper also presents an interesting clinical application of graph-based metric estimators, showing their value for solving practical problems found in medical imaging.


Assuntos
Artefatos , Técnicas de Imagem de Sincronização Cardíaca/métodos , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/fisiopatologia , Módulo de Elasticidade , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA